
Emerging Web Development Paradigms and the
Zeppelin Framework

Peter Elger
Richard Rodger

Eamonn de Leastar

DRAFT

Contents

Context
...
2

Evolution 2
.Revolution 3

The Rise of Javascript
...
4

A Prediction 4
.The Evidence 4

.The Nexus: Cloud, Mobile & HTML5 5
The Challenge of Concurrency
...
5

.Threads 5
.Actors 6

.Non-Blocking I/O 6
C10K Problem 6

.Event Based Programming 7
.Node.js 7

Communications Services & Platforms
...
7
Project Zepplin
...
9
Conclusion
...
10

Scope
This white paper presents a case that the
software development community,
particularly the community developing
cloud-based services and applications, is on
the crest of another wave of innovation. The
current software development stack, and
associated platforms, may have run its
course, and evidence is mounting that its
replacement by a new wave of technology,
architectural approaches in immanent.

Context

Evolution
The evolution of the Web has been well
charted in recent years. With the coining of
the term Web 2.0 (2004) a useful starting
point, there is a reasonably comprehensive
understanding of how the web as a platform
has progressed since. This has included the
stabilization of web services protocols, the
rise of User Generated Content, the
proliferation of Mobile web, the advent of
the Smart Phone/Device/Tablet and the App
Store Model.

However, the underlying tools, architectures
and development practices have also been
through an overhaul over this period and
have made this innovation cycle possible. In
particular, there has been a marked shift
from the traditional “enterprise” stack
(EJB2, .NET), and high ceremony
development methods (RUP) to a more agile
approach (XP), with a full embrace of more
open tools and frameworks. Sometimes
termed “lightweight” approach, this shift has
included rapid evolution in web frameworks
(Spring, Osgi) and the arrival of highly
productive variations on these, most notably
Ruby on Rails and its derivatives, usually
bound to a relational database (MySql).

Coupled with this evolving stack, web
browser performance, stability and
capability has improved dramatically. The
client side web is now clearly formed by the
nexus of HTML, CSS and Javascript, with
the latter in particular the lynchpin of
significant innovation in the usability, power
and flexibility of web applications. A set of

Date

Javascript libraries (jQuery and others) has
radically altered the usage patterns within
the browser, unleashing unsuspected
features in a robust environment. All three
are sometimes grouped under the term
HTML5, which in addition includes
standardized approached to geolocation, 2D
and 3D graphics, offline services, standard
communications channels and more.
Although not quite accurate, the term
HTML5 usefully encapsulates the reach and
ambition of the latest wave of browsers, and
would seem to have significant momentum
from all major players, hardware and
software and infrastructure.

Revolution
There are signs, however, that this
evolutionary approach may have run its
course. The “lightweight” development
stack of Relational Database, Component
Service/Framework + Templating Engine,
all running on a linux back end (a variant of
the so called LAMP stack), is encountering a
major shift in the underlying infrastructure -
the arrival of the cloud. In particular, cloud
based services coupled with advances in
virtualization, have altered the principles
around which applications have been
architected to date. When this is also
combined with various models for smart
phone/tablet development, there is an
argument that we are entering into another
inflection point, comparable to the one
foreseen in 2004.

What this particular movement will lead to
is as yet unclear. However, it seems certain
to yield new opportunities in services,
mobility, flexibility and productivity in
application development and deployment. In
this context, there are signs of disruption
within the current development stack.
Although significant stability has been
achieved since 2004, many its tenets are
now being called into question:

• Database: The dominance of the
relational database is not longer given.
The “NoSql” movement is gathering
pace with many open implementations
of this broader, and perhaps more

scalable architecture for the data store
(MongoDB, CouchDB). When coupled
with Googles Map/Reduce, it may be
possible for more highly capable and
intelligent systems can be constructed at
a fraction of the cost for traditional
relational systems.

• Middleware: Having already preceded
though a series of major shifts over the
past decade (rise and fall of Object
Request Brokers, rise and fall of EJB,
rise and stabilization of web
frameworks), middleware is a useful
touchstone when assessing the state of
software and services. Evidence is
mounting that the sheer complexity of
current enterprise stack (J2EE, .NET) is
causing profound limitations in the scale
and reach of applications thus
architected. The lightweight stack,
evolved in some sense as an alternative
to the traditional stack, may have
reached its peak in Heroku, a marriage
of cloud based services with a stable
web framework. However, more
disruptive technology is already
emerging. In particular, the key to truly
scalable services has always been the
approach to concurrency. A radical
alternative to traditional threading
model (embodied in Heroku) is
emerging. In particular, successive
attempts to solve the concurrency
problem (discussed below) are
converging towards a more radical
approach; namely the so-called non-
blocking option.

• Client: The rise of the app store model is
still taking shape. In particular, the
introduction of this model to the general
web (Google Chrome Web Store) may
generate unforeseen consequences and
trajectories in services and apps. For
instance, the Chrome web store contains
many applications that are
indistinguishable from their apple app
store equivalents (e.g. New York Times).
However, these applications are full
HTML5 (not native), are by definition
more cloud oriented, and are thus
liberated from highly restrictive (and

3

complex) native app development
toolkits.

The Rise of Javascript

A Prediction
The mainstream programming language for
the next ten years will be JavaScript. Once
considered a toy language useful only for
checking form fields on web pages,
JavaScript will dominate enterprise software
development. Why this language and why
now? Today, the Java language is the one to
beat. Java dominates enterprise software
development. JavaScript and Java may have
similar names, but the similarity ends there.
Though sometimes confused, they are very
different languages. JavaScript owes its
name to an accident of history; a failed and
very strange marketing ploy from the early
days of the web, when Netscape tried to
leverage the growing popularity of Sun
Microsystem's new Java language. Both
companies have now retired from the
industry.

JavaScript is the language that web
designers use to build web pages. However,
it is not (yet) the language the software
engineers use to build the business logic for
those same web sites. JavaScript is small,
runs on the client, the web browser. It's easy
to write unmaintainable spaghetti code in
JavaScript. And yet, for all these flaws,
JavaScript is the world's most
misunderstood language. Douglas
Crockford, a senior engineer at Yahoo, is
almost singlehanded responsible to
rehabilitating the language. In a few short,
seminal online essay published shortly after
the turn of the century, Crockford explains
that JavaScript is really LISP, the language
of artificial intelligence. JavaScript borrows
heavily from LISP, and is not really object-
oriented at all. This curious design was well
suited to a simple implementation running in
a web browser. As an unintended
consequence, these same mutations make
JavaScript the perfect language for building
cloud computing services.

Here is a further prediction: within ten years,
every major cloud service will be

implemented in JavaScript, even those from
Microsoft. JavaScript will be the essential
item in every senior software engineer's skill
set. Not only will it be the premier language
for corporate systems, JavaScript will also
dominate mobile devices. Not just phones,
but also tablets. All the while, JavaScript
will continue to be the one and only
language for developing complex interactive
websites, completing drowning out old
stalwarts such as flash, even for games. For
the first time in a history, a truly
homogeneous programming language
infrastructure will develop, with the same
toolkits and libraries used from the top to the
bottom of the technology stack. JavaScript
everywhere

The Evidence
How can such a prediction be made? How
can one make it so confidently? Because it
has all happened before, and it will happen
again. Right now, we are at a technology
inflection point, yet another paradigm shift
is upon us, and the JavaScript wave is
starting to break. This is a familiar pattern;
every ten years or so the programming
world is shaken by a new language, and the
vast majority of developers, and the
corporations they work for, move en mass to
the new playground.

Two technology shifts have preceded this
one, and help to illustrate the shift. Prior to
Java, the C++ language was dominant in the
final decade of the last century. What drove
the adoption of C++? What drove the
subsequent adoption of Java? And what is
driving the current adoption of JavaScript?
In each case, cultural, technological and
conceptual movements coalesced into a
tipping point that caused a sudden and very
fast historical change. Such tipping points
are difficult to predict. No such prediction is
made here – the shift to JavaScript is not to
come, it has already begun. These tipping
points are driven by the chaotic feedback
channels at the heart any emerging
technology..

What drove C++? It was the emergence of
the object-oriented programming paradigm,
the emergence of the PC and Microsoft

4

Windows, and support from academic
institutions. With hindsight such large-scale
trends are easy to identify. The same can be
done for Java. In this case, the idea of the
software virtual machine, the introduction of
garbage collection – a language feature
lacking in C++ that offers far higher
programmer productivity, and first wave of
internet mania. Java, backed by Sun
Microsystems, became the language of the
internet, and many large corporate
networked systems today run on Java.
Microsoft can be included in the “Java”
wave, in the sense the Microsoft's
proprietary competitive offering, C#, is
really Java with the bad bits taken out.

Despite the easily recognizable nature of
these two prior waves, one feature that both
share that neither wave led to a true
monoculture. The C++ wave was splintered
by operating systems, the Java wave by
competing virtual languages such as C#.
Nonetheless, the key drivers, the key
elements of each paradigm shift, created a
decade-long island of stability in the
technology storm.

The Nexus: Cloud, Mobile & HTML5

Cloud computing is one of the key drivers
compelling the current wave of innovation.
For the first time, corporations are moving
their sensitive data and operations outside of
the building. They are placing mission
critical systems into the “cloud”. Cloud
computing is now an abused term. It means
everything and nothing. But one thing that it
does mean is that computing capacity is now
metered by usage. Technology challenges
are now solved by sinking capital into big
iron servers. Instead, the operating expense
dominates, driving the need for highly
efficient solutions. The momentum for green
energy only exacerbates this trend. Needless
to say, Java/C# are not up to the job. We
shall see shortly that JavaScript is uniquely
placed to benefit from the move to cloud
computing.

Mobile computing represents the other side
of the coin. The increasing capabilities of

mobile devices drive a virtuous circle of
cloud-based support services leading to
better devices that access more of the cloud,
leading to ever more cloud services. The
problem with mobile devices is the severe
fragmentation. Many different platforms,
technologies and form factors vie for
dominance, without a clear leader in all
categories. The cost of supporting more than
one or two platforms is prohibitive. And yet
there is a quick and easy solution: the new
HTML5 standard for websites. This standard
offers a range of new features such as offline
apps and video and audio capabilities that
give mobile websites almost the same
abilities as native device applications. As
HTML5 adoption grows, more and more
mobile application will be developed using
HTML5, and of course, made interactive
using JavaScript, the language of websites.

While it is clear that the ubiquity of HTML5
will drive JavaScript on the client, it is less
clear why JavaScript will also be driven by
the emergence of cloud computing. To see
this, we have to understand something of the
way in which network services are built, and
the challenges that the cloud brings to
traditional approaches.

The Challenge of Concurrency

Threads
Diverse approaches to programmatically
“coping” with concurrency have long been a
source of contention among software
developers. The evolution of the various
approaches to concurrency is well illustrated
in the C like languages, particularly Java.
Although Java was designed with thread
based concurrency in mind (unlike C & C+
+), its currency support has evolved
significantly since its inception, with
adjustments made to the core syntax, the
libraries and the recommended approaches.
The fundamental mechanism (synchronized
keyword to serialize method access), has
been supplemented with concurrent data
structures, more expressive annotations, and
an extensive rework of the concurrency
model in Java 5 to incorporate an new
“executor” framework. However, concurrent

5

programming in Java is still regarded as a
complex and error prone, with non-
determinism an ever present worry, even for
systems long deployed in the field.

Actors
The java concurrency module is founded on
the shared state semantics of a single multi-
threaded process, whereby threads can share
resources and memory, but with locks
associated with specific data structures.
Alternatives to this model have gained some
ground. The actors model rules out any
shared data structures (and their resource
hungry locks), with concurrency achieved
by message passing between autonomous
threads - each thread (an actor) has
exclusive access to its own data structures.
In functional languages derived from Java
(Scala, clojure), immutability itself is
elevated to be the default programming
model. This requires wholesale adoption of
functional approaches (or object-functions
hybrids in the case of Scala), with the
consequent profound change in
programming style and heritage. With all of
these approaches there is one common
characteristic. Separate threads are created,
with their own stacks and program counters.
Although the opportunities for inter-thread
synchronization vary, such synchronization
must occur at some stage, with consequent
overhead associated with task switching,
memory usage and general processor load.

Non-Blocking I/O
There is an alternative, which has its origins
in an era that predates the general
acceptance of multi threaded infrastructure.
Evolved to meet the requirements for
responsive I/O in single processor systems,
it sometimes takes the the term “Non
Blocking IO”, although this term has also
been applied to threaded designs. Originally
devised as a set if interrupts and associated
daisy chained interrupt handlers, in the
modern sense (if we can call it that), non-
blocking I/O implies and extensive use of
callbacks in API design and usage. In this
context, all opportunities for blocking are
replaced by passing a callback parameter, to
be invoked on completion of the deferred
task or I/O request. A somewhat counter-

intuitive programming style, it has been
criticized for its verbosity and general
awkwardness.

In certain programming languages it is
indeed verbose - Java in particular is
encumbered with a high-ceremony
anonymous inner class syntax which make
callbacks quite difficult to orchestrate. Also,
in Java and other languages of that
generation, the callbacks are limited in
scope and place severe restrictions around
the context they can access. What they lack
is a “closure” capability - essentially a form
of delegate/callback/function handle - which
also carries (encloses) a well defined context
that can be safely accessed when it is
activated. Closures have become a hot topic
in programming language recently, and Java
itself is slated to this capability in future
versions. JVM derived languages such as
Scala and Groovy have this capability, as
does Clojure via its Lisp heritage. In fact the
term closure originates from these functional
languages.

C10K Problem
This challenge is made concrete by what is
known as the C10K problem, first posed by
Dan Kegel in 2003. The C10K is this: how
can you service 10000 concurrent clients on
one machine. The idea is that you have
10000 web browsers, or 10000 mobile
phones all asking the same single machine
to provide a bank balance or process an e-
commerce transaction. That's quite a heavy
load. Java solves this by using threads,
which are way to simulate parallel
processing on a single physical machine.
Threads have been the workhorse of high
capacity web servers for the last ten years,
and a technique known as “thread pooling”
is considered to be industry best practice.
But threads are not suitable for high capacity
servers. Each thread consumes memory and
processing power, and there's only so much
of that to go round. Further threads
introduce complex programming programs,
including a particularly nasty one known as
“deadlock”. Deadlock happens when two
threads wait for each other. They are both
jammed and cannot move forward, like Dr.
Seuss's South-going Zax and North-going

6

Zax. When this happens, the client is caught
in the middle and waits, forever. The
website, or cloud service, is effectively
down.

Event Based Programming
There is a solution to the this problem –
event-based programming. Unlike threads,
events are light-weight constructs. Instead of
assigning resources in advance, the system
triggers code to execute only when there is
data available. This is much more efficient.
It is a different style of programming, one
that has not been quite as fashionable as
threads. The event-based approach is well
suited to the cost structure of cloud
computing – it is resource efficient, and
enables one to build C10K-capable systems
on cheap commodity hardware.

Threads also lead to a style of programming
that is known as synchronous blocking code.
For example, when a thread has to get data
from a database, it hangs around (blocks)
waiting for the data to be returned. If
multiple database queries have to run to
build a web page (to get the user's cart, and
then the product details, and finally the
current special offers), then these have to
happen one after other, in other words in a
synchronous fashion. You can see that this
leads to a lot of threads alive at the same
time in one machine, which eventually runs
out of resources.

The event based model is different. In this
case, the code does not wait for the database.
Instead it asks to be notified when the
database responds, hence it is known as non-
blocking code. Further, multiple activities do
not need to wait on each other, so the code
can be asynchronous, and not one step after
another (synchronous). This leads to highly
efficient code that can meet the C10K
challenge.

JavaScript is uniquely suited to event-based
programming because it was designed to
handle events. Originally these events were
mouse clicks, but now they can be database
results. There is no difference at an
architectural level inside the “event loop”,
the place where events are doled out. As a

result of its early design choices to solves a
seemingly unrelated problem, JavaScript as
a language turns out to be perfectly designed
for building efficient cloud services.

Node.js
The one missing piece of the JavaScript
puzzle is a high performance
implementation. Java overcame it's early
sloth, and was progressively optimized by
Sun. JavaScript needed a serious corporate
sponsor to really get the final raw
performance boost that it needed. Google
has stepped out. Google needed fast
JavaScript so that its services like Gmail and
Google Calendar would work well and be
fast for end-users. To do this, Google
developed the V8 JavaScript engine, which
compiles JavaScript into highly optimized
machine code on the fly. Google open-
source the V8 engine, and it was adapted by
the open source community for cloud
computing. The cloud computing version of
V8 is known as Node.js, a high performance
JavaScript environment for servers.

All the pieces are now in place. The industry
momentum from cloud and mobile
computing. The conceptual movement
towards event-based systems, and the
cultural movement towards accepting
JavaScript as a serious language. All these
drive towards a tipping point that has begun
to accelerate: JavaScript is the language of
the next wave

Development Frameworks
It is only a few short years since Ruby on
Rails (RoR) was the new kid on the block.
At the time if its inception, RoR was a
highly innovative development framework.
The key driver for mass adoption of RoR
was hugely increased developer productivity
through "convention over configuration", an
approach which has now certainly entered
the zeitgeist and which has been adopted by
almost all of the current development stacks:
for example Python's Django or PHP's Cake.

The predominant application deployment
model for most organizations during the rise

7

of RoR was owned server infrastructure: i.e.
make some capital investment in server
hardware on which to deploy applications.
Under this model operational expenditure
was relatively static and was based on
monthly costs for colocation and bandwidth.
Operational efficiency of deployed, in the
field, applications was not so important for
anyone but the really large sites, as long as
the application could scale horizontally to
some degree, capacity could be added by
purchasing more hardware which was a one
off hit if it could be accommodated into
existing cabinets / racks.

With the mass adoption of cloud computing,
this model is flipped on its head. Deploying
to the cloud requires little or no capital
investment, however, operational
expenditure is now directly tied to the
efficiency of deployed applications. There is
now a clear economic driver for efficient
web applications and services.

Whilst advances have been made by the
major languages and frameworks,
fundamentally, they do not make the best
use of the available compute resources and
are therefore not best suited to operation in
the cloud. Furthermore experience has
shown that these frameworks suffer from a
number of other deficiencies:

The SPA Disjoint
RoR type frameworks exhibit a Model View
Controller (MVC) architectural structure.
Under this paradigm, an application consists
of a set of MVC triplets that are processed
server side to render html back to the client.
However, most modern applications no
longer fit this model and are increasingly
adopting the Single Page Application (SPA)
or Multi-Single Page Application (MSPA)
architectural style. Under this model static
html is sent down to the client and acts as a
basic application frame. Client side
javascript then makes AJAX requests to
“hang” the front end functional elements
onto the application frame. Consequently
much more of the application logic is
implemented on the client in javascript.
Whilst some work has been done in this
area, notably backbone,js and Faux, none of
the major MVC frameworks provide any

governance or organizational structure for
client side javascript. Developers are left to
construct their own ad-hoc client side
application architectures over libraries such
as JQuery. This often means that the client
can quickly degenerate to spaghetti code
with little or no unit testing.

Code Duplication
The SPA Disjoint also leads to code
duplication. Take for example the task of
verifying and sanitizing user input. To
provide a good user experience and rapid
response time, this task is best done on the
client. However for security reasons it must
also be checked server side. Therefore this
logic is typically implemented twice, once in
javascript on the client and again on the
server in the whatever language is
appropriate to the framework being used
(ruby, python, etc...).

Relational Database Assumption
RoR type frameworks were built around the
assumption that the framework would talk to
a single relational database. Indeed in early
versions of rails it was difficult to introduce
an additional relational datastore into an
application (1). All the current production
frameworks make the unstated assumption
that the back end is an SQL compliant
database.

Language Proliferation
To work end to end with any current MVC
framework one must be proficient in a
minimum of five languages - SQL, one of
Ruby/Python/Php..., Javascript, HTML and
CSS. This can have one of two effects,
either individual developers must context
switch between the various languages
depending on where they are in the stack at
a given point in time, or a team is broken
down into “front end” and “back end”
specialists, a division which can cause delay
and communication overhead when
implementing application functionality.

8

Project Zeppelin
Zeppelin is a low friction, all javascript,
distributed MVC development framework
that supports multiple applications per
server stack instance. Zeppelin addresses
many of the issues outlined above, whilst at
the same time preserving and indeed, we
believe, improving upon all that is good
about the current set of MVC application
stacks, most notably developer productivity.

 Zeppelin is built on top of Node.js, connect,
JQuery and JQuote. A schematic of the
framework architecture is depicted in the
figure below.

Distributed MVC
Zeppelin implements a distributed MVC
architecture, wherein view processing is
offloaded to the client tier. View templates
implement the familiar <%= %> syntax
however the template language is javascript.
Zeppelin is designed to work best with
NoSQL type data stores such as mongodb
and implements a plugin type architecture
for datasource drivers. Drivers must
implement a JSON only northbound
interface into the framework.

All Javascript, Low friction.
Zeppelin is all javascript from the data store
to the client. This design reduces the number
of required languages for users of the
framework from five (for RoR Django etc...)
to just three, HTML for layout, CSS for
design and javascript for code, irrespective
of where the code is executing. This
approach has some profound consequences
for the application developer:
• The mental disjoint between client and

server development is reduced, one can
think in javascript all of the time. This is a
deeper, more fundamental shift than using
tools such as GWT.

• Code can be shared between the client and
server, for example helper modules for
tasks such as data input validation can be
written once and executed on both tiers.

• Ensuring that the framework deals
exclusively with JSON data means that
one can again think in javascript when
searching for and manipulating data on
both the client and server tiers

• Use of NoSQL data sources / stores means
that the frame work is schema-less,
requiring no database migrations or other
such constructs

All of which servers to reduce the mental
friction required to use the framework and
hence speed up developer productivity.

Cloud Framework
Zeppelin use of a non-blocking core
platform, Node.js, provides for a highly
efficient operational environment out of the
box. Furthermore Zeppelin strives for
operational scalability through two key
architectural choices:

• View processing is handled on the client,
meaning that less processing resource is
required on the server

• Use of NoSQL data stores mean that there
is no requirement for the framework to
flatten data to JSON or other format
before sending to the client. Indeed if the
document format is clearly thought
through the server component can be
reduced to a simple conduit through which
JSON data can flow to the client.

9

Multiple Applications per Stack
Zeppelin supports the deployment of many
individual applications onto a single stack
instance, providing an efficient mechanism
for could based deployment and hosting.

Conclusion
Todo

1 http://magicmodels.rubyforge.org/
magic_multi_connections/)

10

http://magicmodels.rubyforge.org/magic_multi_connections/
http://magicmodels.rubyforge.org/magic_multi_connections/
http://magicmodels.rubyforge.org/magic_multi_connections/
http://magicmodels.rubyforge.org/magic_multi_connections/

