
Zombie.js

Insanely fast, full-stack, headless browser
testing

2
4
4
5
5
7
8
9

10
10
11
11
12
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
16
16
16
16
16
17
17
17
17
18
18
18
18
18
18
19
19
19
19
20
20
20

Table of Content

Table of Content
Zombie.js

The Bite
Infection
Walking
Hunting
Feeding
Readiness
In The Family
Reporting Glitches
Giving Back
Brains
See Also

The Zombie API
The Browser

new zombie.Browser(options?) : Browser
Browser Options
browser.visit(url, callback)
browser.visit(url, options, callback)
browser.open() : Window
browser.window : Window
browser.error : Error
browser.errors : Array

Document Content
browser.body : Element
browser.document : Document
browser.evaluate(expr) : Object
browser.html(selector?, context?) : String
browser.queryAll(selector, context?) : Array
browser.query(selector, context?) : Element
browser.text(selector, context?) : String
browser.xpath(expression, context?) => XPathResult

Navigation
browser.clickLink(selector, callback)
browser.link(selector) : Element
browser.location : Location
browser.location = url
browser.statusCode : Number
browser.success : Boolean
browser.visit(url, callback)
browser.visit(url, options, callback)
browser.redirected : Boolean

Forms
browser.attach(selector, filename, callback) : this
browser.check(field, callback) : this
browser.choose(field, callback) : this
browser.field(selector) : Element
browser.fill(field, value, callback) : this
browser.button(selector) : Element
browser.pressButton(selector, callback)

Table of Content 2

21
21
21
21
21
22
22
22
22
23
23
23
23
23
23
24
24
24
24
24
24
24
25
25
25
25
25
26
26
26
26
26
27
27
27
27
27
27
27

28
31
31
32
32

browser.select(field, value, callback) : this
browser.selectOption(option, callback) : this
browser.uncheck(field, callback) : this
browser.unselect(field, value, callback) : this
browser.unselectOption(option, callback) : this

State Management
browser.cookies(domain, path?) : Cookies
browser.fork() : Browser
browser.loadCookies(String)
browser.loadHistory(String)
browser.loadStorage(String)
browser.localStorage(host) : Storage
browser.saveCookies() : String
browser.saveHistory() : String
browser.saveStorage() : String
browser.sessionStorage(host) : Storage

Interaction
browser.onalert(fn)
browser.onconfirm(question, response)
browser.onconfirm(fn)
browser.onprompt(message, response)
browser.onprompt(fn)
browser.prompted(message) => boolean

Events
browser.fire(name, target, calback?)
browser.wait(callback)
browser.wait(duration, callback)
Event: 'done'
Event: 'error'
Event: 'loaded'

Debugging
browser.dump()
browser.lastError : Object
browser.lastRequest : Object
browser.lastResponse : Object
browser.log(arguments)
browser.log(function)
browser.resources : Object
browser.viewInBrowser(name?)

CSS Selectors
Troubleshooting guide

The Dump
Debugging
Request/response

Table of Content 3

Zombie.js

Zombie.js

Insanely fast, headless full-stack testing using Node.js

The Bite

If you're going to write an insanely fast, headless browser, how can you
not call it Zombie? Zombie it is.

Zombie.js is a lightweight framework for testing client-side JavaScript
code in a simulated environment. No browser required.

Let's try to sign up to a page and see what happens:

var zombie = require("zombie");
var assert = require("assert");

// Load the page from localhost
zombie.visit("http://localhost:3000/", function (e, browser, status) {

 // Fill email, password and submit form
 browser.
 fill(�"email", "zombie@underworld.dead").
 fill(�"password", "eat-the-living").
 pressButton("Sign Me Up!", function(e, browser, status) {

 // Form submitted, new page loaded.
 assert.equal(status, 200);
 assert.equal(browser.text("title"), "Welcome To Brains Depot");

 })

});

Zombie.js 4

file:///

Well, that was easy.

Infection

To install Zombie.js you need Node.js, NPM, a C++ compiler and
Python.

On OS X start by installing XCode, or use the OSX GCC installer
(less to download).

Next, assuming you're using the mighty Homebrew:

$ brew install node
$ node --version
v0.6.2
$ curl http://npmjs.org/install.sh | sudo sh
$ npm --version
1.0.106
$ npm install zombie

On Ubuntu try these steps:

$ sudo apt-get install python-software-properties
$ sudo add-apt-repository ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install nodejs nodejs-dev npm
$ node --version
v0.6.2
$ npm --version
1.0.106
$ npm install z")bie

On Windows you'll need Cygwin to get access to GCC, Python, etc.
Read this for detailed instructions and troubleshooting.

Walking

To start off we're going to need a browser. A browser maintains state

Zombie.js 5

https://github.com/kennethreitz/osx-gcc-installer
http://mxcl.github.com/homebrew/
https://github.com/joyent/node/wiki/Building-node.js-on-Cygwin-(Windows)

across requests: history, cookies, HTML 5 local and session stroage, etc.
A browser has a main window, and typically a document loaded into
that window.

You can create a new zombie.Browser and point it at a document,
either by setting the location property or calling its visit function.
As a shortcut, you can just call the zombie.visit function with a
URL and callback.

The browser will load the document and if the document includes any
scripts, also load and execute these scripts. It will then process some
events, for example, anything your scripts do on page load. All of that,
just like a real browser, happens asynchronously.

To wait for the page to fully load and process events, you pass visit a
callback function. Zombie will then call your callback with null, the
browser object, the status code of the last response, and an array of
errors (hopefully empty). This is JavaScript, so you don't need to declare
all these arguments, and in fact can access them as
browser.statusCode and browser.errors.

(Why would the first callback argument be �null? It works great when
using asynchronous testing frameworks like Vows.js

Most errors that occur â€“ resource loading and JavaScript execution
â€“ are not fatal, so rather the stopping processing, they are collected in
browser.errors. As a convenience, you can get the last error by
calling browser.error, for example:

browser.visit("http://localhost:3000/", function () {
 assert.equal(browser.success, "Expected status code to be 2xx");
 if (browser.error)
 console.dir("Errors reported:", browser.errors);
})

Whenever you want to wait for all events to be processed, just call
browser.wait with a callback. If you know how long the wait is (e.g.
animation or page transition), you can pass a duration (in milliseconds)
as the first argument.�

Zombie.js 6

http://vowsjs.org/)

Otherwise, Zombie makes best judgement by waiting up to 5 seconds
for the page to load resources (scripts, XHR requests, iframes), process
DOM events, and fire timeouts events. �It is quite common for pages to
fire timeout events as they load, e.g. jQuery's �onready. Usually these
events delay the test by no more than a few milliseconds.

Read more on the Browser API

Hunting

There are several ways you can inspect the contents of a document. For
starters, there's the DOM API, which you can use to find elements and�
traverse the document tree.

You can also use CSS selectors to pick a specific element or node list.�
Zombie.js implements the DOM Selector API. These functions are
available from every element, the document, and the Browser object
itself.

To get the HTML contents of an element, read its innerHTML property.
If you want to include the element itself with its attributes, read the
element's outerHTML property instead. Alternatively, you can call the
browser.html function with a CSS selector and optional context
element. If the function selects multiple elements, it will return the
combined HTML of them all.

To see the textual contents of an element, read its textContent
property. Alternatively, you can call the browser.text function with a
CSS selector and optional context element. If the function selects
multiple elements, it will return the combined text contents of them all.

Here are a few examples for checking the contents of a document:

// Make sure we have an element with the ID brains.
assert.ok(browser.query("#brains"));

// Make sure body has two elements with the class hand.
assert.lengthOf(browser.body.queryAll(".hand"), 2);

// Check the document title.

Zombie.js 7

file:///Users/assaf/projects/zombie/html/api
http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/selectors-api/

assert.equal(browser.text("title"), "The Living Dead");

// Show me the document contents.
console.log(browser.html());

// Show me the contents of the parts table:
console.log(browser.html("table.parts"));

CSS selectors are implemented by Sizzle.js. In addition to CSS 3
selectors you get additional and quite useful extensions, such as
:not(selector), [NAME!=VALUE], :contains(TEXT),
:first/:last and so forth. Check out the Sizzle.js documentation for
more details.

Read more on the Browser API and CSS selectors

Feeding

You're going to want to perform some actions, like clicking links,
entering text, submitting forms. You can certainly do that using the
DOM API, or several of the convenience functions we're going to cover
next.

To click a link on the page, use clickLink with selector and callback.
The first argument can be a CSS selector (see �Hunting), the A element, or
the text contents of the A element you want to click.

The second argument is a callback, which much like the visit callback
gets fired after all events are processed.�

Let's see that in action:

// Now go to the shopping cart page and check that we have
// three bodies there.
browser.clickLink("View Cart", function(e, browser, status) {
 assert.lengthOf(browser.queryAll("#cart .body"), 3);
});

To submit a form, use pressButton. The first argument can be a CSS�

Zombie.js 8

https://github.com/jeresig/sizzle/wiki
file:///Users/assaf/projects/zombie/html/api
file:///Users/assaf/projects/zombie/html/selectors
http://www.w3.org/DOM/DOMTR

selector, the button/input element. the button name (the value of the
name argument) or the text that shows on the button. You can press any
BUTTON element or INPUT of type submit, reset or button. The
second argument is a callback, just like clickLink.

Of course, before submitting a form, you'll need to fill it with values.�
For text fields, use the �fill function, which takes two arguments:
selector and the field value. �This time the selector can be a CSS
selector, the input element, the field name (its �name attribute), or the
text that shows on the label associated with that field.�

Zombie.js supports text fields, password fields, text areas, and also the��
new HTML 5 fields types like email, search and url.�

The fill function returns a reference to the browser, so you can chain
several functions together. Its sibling functions check and uncheck (for
check boxes), choose (for radio buttons) and select (for drop downs)
work the same way.

Let's combine all of that into one example:

// Fill in the form and submit.
browser.
 fill(�"Your Name", "Arm Biter").
 fill(�"Profession", "Living dead").
 select("Born", "1968").
 uncheck("Send me the newsletter").
 pressButton("Sign me up", function(e, browser, status) {

 // Make sure we got redirected to thank you page.
 assert.equal(browser.location.pathname, "/thankyou");

 });

Read more on the Browser API

Readiness

Zombie.js supports the following:

Zombie.js 9

file:///Users/assaf/projects/zombie/html/api

HTML5 parsing and dealing with tag soups
DOM Level 3 implementation
HTML5 form fields (�search, url, etc)
CSS3 Selectors with some extensions
Cookies and Web Storage
XMLHttpRequest in all its glory
setTimeout/setInterval
pushState, popstate and hashchange events
Scripts that use document.write
alert, confirm and prompt

In The Family

capybara-zombie -- Capybara driver for zombie.js running on top of
node.

zombie-jasmine-spike -- Spike project for trying out Zombie.js with
Jasmine

Vows BDD -- A BDD wrapper for Vows, allowing for easy writing of
tests in a given-when-then format

Mink -- PHP 5.3 acceptance test framework for web applications

Reporting Glitches

Step 1: Run Zombie with debugging turned on, the trace will help
figure out what it's doing. For example:�

var browser = new zombie.Browser({ debug: true });
browser.visit("http://thedead", function(e, browser, status) {
 console.log(status, browser.errors);
 ...
});

Step 2: Wait for it to finish processing, then dump the current browser�
state:

browser.dump();

Zombie.js 10

http://www.w3.org/DOM/DOMTR
http://sizzlejs.com/
http://dev.w3.org/html5/webstorage/
https://github.com/plataformatec/capybara-zombie
https://github.com/mileskin/zombie-jasmine-spike
https://github.com/jmreidy/vows-bdd
https://github.com/Behat/Mink

Step 3: If publicly available, include the URL of the page you're trying
to access. Even better, provide a test script I can run from the Node.js
console (similar to step 1 above).

Read more about troubleshooting

Giving Back

Find assaf/zombie on Github
Fork the project
Add tests
Make your changes
Send a pull request

Read more about the guts of Zombie.js and check out the outstanding
to-dos.

Follow announcements, ask questions on the Google Group

Get help on IRC: join zombie.js on Freenode or web-based IRC

Brains

Zombie.js is copyright of Assaf Arkin, released under the MIT License

Blood, sweat and tears of joy:

Damian Janowski aka djanowski

JosÃ© Valim aka josevalim

Bob Lail boblail

And all the fine people mentioned in �the changelog.

Zombie.js is written in CoffeeScript for Node.js

DOM emulation by Elijah Insua's JSDOM

HTML5 parsing by Aria Stewart's HTML5

Zombie.js 11

file:///Users/assaf/projects/zombie/html/troubleshoot
http://github.com/assaf/zombie
file:///Users/assaf/projects/zombie/html/guts
file:///Users/assaf/projects/zombie/html/todo
https://groups.google.com/forum/?hl=en#!forum/zombie-js
irc://irc.freenode.net/zombie.js
http://webchat.freenode.net/?channels=zombie-js
http://labnotes.org
https://github.com/djanowski
http://blog.plataformatec.com.br/
http://boblail.tumblr.com/
file:///Users/assaf/projects/zombie/html/changelog
http://jashkenas.github.com/coffee-script/
http://nodejs.org/
http://jsdom.org/
https://github.com/aredridel/html5

CSS selectors by John Resig's Sizzle.js

XPath support using Google's AJAXSLT

Magical Zombie Girl by Toho Scope

See Also

zombie-api(7), zombie-troubleshoot(7), zombie-selectors(7),
zombie-changelog(7), zombie-todo(7)

Zombie.js brought to you by very alive people.

Zombie.js 12

http://sizzlejs.com/
http://code.google.com/p/ajaxslt/
http://www.flickr.com/people/tohoscope/
https://github.com/assaf/zombie/contributors

Zombie.js

The Zombie API

The Browser

new zombie.Browser(options?) : Browser

Creates and returns a new browser. A browser maintains state across
requests: history, cookies, HTML 5 local and session stroage. A browser
has a main window, and typically a document loaded into that window.

You can pass options when initializing a new browser, or set them on an
existing browser instance. For example:

browser = new zombie.Browser({ debug: true })
browser.runScripts = false

Alternatively:

zombie.visit("http://localhost:3000/", { debug: true, runScripts: false },
 function (e, browser, status) {
 ...
});

Browser Options

You can use the following options:

credentials -- Object containing authorization credentials.
debug -- Have Zombie report what it's doing. Defaults to false.
loadCSS -- Loads external stylesheets. Defaults to true.
runScripts -- Run scripts included in or loaded from the page.
Defaults to true.
userAgent -- The User-Agent string to send to the server.
site -- Base URL for all requests. If set, you can call visit with

The Zombie API 13

file:///

relative URL.
waitFor -- Tells wait function how long to wait (in milliseconds)
while timers fire. �Defaults to 5 seconds.

browser.visit(url, callback)

browser.visit(url, options, callback)

Shortcut for creating new browser and calling browser.visit on it. If
the second argument are options, initializes the browser with these
options. See Navigation below for more information about the visit
method.

browser.open() : Window

Opens a new browser window.

browser.window : Window

Returns the main window. A browser always has one window open.

browser.error : Error

Returns the last error reported while loading this window.

browser.errors : Array

Returns all errors reported while loading this window.

Document Content

You can inspect the document content using the DOM API traversal
methods or the DOM Selector API.

To find an element with ID "item-23":�

var item = document.getElementById("item-32");

For example, to find out the first input field with the name "email":���

The Zombie API 14

http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/selectors-api/

var field = document.querySelector(�":input[name=email]");

To find out all the even rows in a table:�

var rows = table.querySelectorAll("tr:even");

CSS selectors support is provied by Sizzle.js, the same engine used by
jQuery. You're probably familiar with it, if not, check the list of
supported selectors.

browser.body : Element

Returns the body element of the current document.

browser.document : Document

Returns the main window's document. Only valid after opening a
document (see browser.visit).

browser.evaluate(expr) : Object

Evaluates a JavaScript expression in the context of the current window
and returns the result. For example:

browser.evaluate("document.title");

browser.html(selector?, context?) : String

Returns the HTML contents of the selected elements.

With no arguments returns the HTML contents of the document. This
is one way to find out what the page looks like after executing a bunch�
of JavaScript.

With one argument, the first argument is a CSS selector evaluated�
against the document body. With two arguments, the CSS selector is
evaluated against the element given as the context.

The Zombie API 15

https://github.com/jeresig/sizzle/wiki
file:///Users/assaf/projects/zombie/html/selectors

For example:

console.log(browser.html("#main"));

browser.queryAll(selector, context?) : Array

Evaluates the CSS selector against the document (or context node) and
return array of nodes. (Unlike document.querySelectorAll that
returns a node list).

browser.query(selector, context?) : Element

Evaluates the CSS selector against the document (or context node) and
return an element.

browser.text(selector, context?) : String

Returns the text contents of the selected elements.

With one argument, the first argument is a CSS selector evaluated�
against the document body. With two arguments, the CSS selector is
evaluated against the element given as the context.

For example:

console.log(browser.text("title"));

browser.xpath(expression, context?) =>
XPathResult

Evaluates the XPath expression against the document (or context node)
and return the XPath result. Shortcut for document.evaluate.

Navigation

Zombie.js loads pages asynchronously. In addition, a page may require
loading additional resources (such as JavaScript files) and executing�
various event handlers (e.g. jQuery.onready).

The Zombie API 16

For that reason, navigating to a new page doesn't land you immediately
on that page: you have to wait for the browser to complete processing
of all events. You can do that by calling browser.wait or passing a
callback to methods like visit and clickLink.

browser.clickLink(selector, callback)

Clicks on a link. The first argument is the link text or CSS selector.�
Second argument is a callback, invoked after all events are allowed to
run their course.

Zombie.js fires a �click event and has a default event handler that will
to the link's href value, just like a browser would. However, event
handlers may intercept the event and do other things, just like a real
browser.

For example:

browser.clickLink("View Cart", function(e, browser, status) {
 assert.lengthOf(browser.queryAll("#cart .body"), 3);
});

browser.link(selector) : Element

Finds and returns a link (A) element. You can use a CSS selector or find�
a link by its text contents (case sensitive, but ignores leading/trailing
spaces).

browser.location : Location

Return the location of the current document (same as
window.location).

browser.location = url

Changes document location, loading a new document if necessary
(same as setting window.location). This will also work if you just
need to change the hash (Zombie.js will fire a �hashchange event), for
example:

The Zombie API 17

browser.location = "#bang";
browser.wait(function(e, browser) {
 // Fired hashchange event and did something cool.
 ...
});

browser.statusCode : Number

Returns the status code returned for this page request (200, 303, etc).

browser.success : Boolean

Returns true if the status code is 2xx.

browser.visit(url, callback)

browser.visit(url, options, callback)

Loads document from the specified URL, processes all events in the�
queue, and finally invokes the callback.�

In the second form, sets the options for the duration of the request, and
resets before passing control to the callback. For example:

browser.visit("http://localhost:3000", { debug: true },
 function(e, browser, status) {
 console.log("The page:", browser.html());
 }
);

browser.redirected : Boolean

Returns true if the page request followed a redirect.

Forms

Methods for interacting with form controls (e.g. fill, check) take a

The Zombie API 18

first argument that tries to identify the form control using a variety of�
approaches. You can always select the form control using an
appropriate CSS selector, or pass the element itself.

Zombie.js can also identify form controls using their name (the value of
the name attribute) or using the text of the label associated with that
control. In both case, the comparison is case sensitive, but to work
flawlessly, ignores leading/trailing whitespaces when looking at labels.�

If there are no event handlers, Zombie.js will submit the form just like a
browser would, process the response (including any redirects) and
transfer control to the callback function when done.

If there are event handlers, they will all be run before transferring
control to the callback function. Zombie.js can even support jQuery
live event handlers.

browser.attach(selector, filename, callback) : this�

Attaches a file to the specified input field. ���The second argument is the
file name (you cannot attach streams).�

Without callback, returns this.

browser.check(field, callback) : this�

Checks a checkbox. The argument can be the field name, label text or a�
CSS selector.

Without callback, returns this.

browser.choose(field, callback) : this�

Selects a radio box option. The argument can be the field name, label�
text or a CSS selector.

Without callback, returns this.

browser.field(selector) : Element�

Find and return an input field (�INPUT, TEXTAREA or SELECT) based on

The Zombie API 19

file:///Users/assaf/projects/zombie/html/selectors

Find and return an input field (�INPUT, TEXTAREA or SELECT) based on
a CSS selector, field name (its �name attribute) or the text value of a
label associated with that field (case sensitive, but ignores�
leading/trailing spaces).

browser.fill(field, value, callback) : this��

Fill in a field: input field or text area. ��The first argument can be the�
field name, label text or a CSS selector. �The second argument is the
field value.�

For example:

browser.fill("Name", "ArmBiter").fill("Password", "Brains...")��

Without callback, returns this.

browser.button(selector) : Element

Finds a button using CSS selector, button name or button text (BUTTON
or INPUT element).

browser.pressButton(selector, callback)

Press a button. Typically this will submit the form, but may also reset
the form or simulate a click, depending on the button type.

The first argument is either the button name, text value or CSS�
selector. Second argument is a callback, invoked after the button is
pressed, form submitted and all events allowed to run their course.

For example:

browser.fill(�"email", "zombie@underworld.dead").
 pressButton("Sign me Up", function() {
 // All signed up, now what?
 });

Returns nothing.

The Zombie API 20

browser.select(field, value, callback) : this�

Selects an option. The first argument can be the field name, label text��
or a CSS selector. The second value is the option to select, by value or
label.

For example:

browser.select("Currency", "brains")

See also selectOption.

Without callback, returns this.

browser.selectOption(option, callback) : this

Selects the option (an OPTION element).

Without callback, returns this.

browser.uncheck(field, callback) : this�

Unchecks a checkbox. The argument can be the field name, label text�
or a CSS selector.

Without callback, returns this.

browser.unselect(field, value, callback) : this�

Unselects an option. The first argument can be the field name, label��
text or a CSS selector. The second value is the option to unselect, by
value or label.

You can use this (or unselectOption) when dealing with multiple
selection.

Without callback, returns this.

browser.unselectOption(option, callback) : this

The Zombie API 21

Unselects the option (an OPTION element).

Without callback, returns this.

State Management

The browser maintains state as you navigate from one page to another.
Zombie.js supports both cookies and HTML5 Web Storage.

Note that Web storage is specific to a host/port combination. �Cookie
storage is specific to a domain, typically a host, ignoring the port.�

browser.cookies(domain, path?) : Cookies

Returns all the cookies for this domain/path. Path defaults to "/".

For example:

browser.cookies("localhost").set("session", "567");

The Cookies object has the methods clear(), get(name),
set(name, value), remove(name) and dump().

The set method accepts a third argument which may include the
options expires, maxAge and secure.

browser.fork() : Browser

Return a new browser using a snapshot of this browser's state. This
method clones the forked browser's cookies, history and storage. The
two browsers are independent, actions you perform in one browser do
not affect the other.

Particularly useful for constructing a state (e.g. sign in, add items to a
shopping cart) and using that as the base for multiple tests, and for
running parallel tests in Vows.

browser.loadCookies(String)

Load cookies from a text string (e.g. previously created using

The Zombie API 22

http://www.ietf.org/rfc/rfc2109.txt
http://dev.w3.org/html5/webstorage/

browser.saveCookies.

browser.loadHistory(String)

Load history from a text string (e.g. previously created using
browser.saveHistory.

browser.loadStorage(String)

Load local/session stroage from a text string (e.g. previously created
using browser.saveStorage.

browser.localStorage(host) : Storage

Returns local Storage based on the document origin (hostname/port).

For example:

browser.localStorage("localhost:3000").setItem("session", "567");

The Storage object has the methods key(index), getItem(name),
setItem(name, value), removeItem(name), clear() and dump. It
also has the read-only property length.

browser.saveCookies() : String

Save cookies to a text string. You can use this to load them back later
on using browser.loadCookies.

browser.saveHistory() : String

Save history to a text string. You can use this to load the data later on
using browser.loadHistory.

browser.saveStorage() : String

Save local/session storage to a text string. You can use this to load the
data later on using browser.loadStorage.

The Zombie API 23

browser.sessionStorage(host) : Storage

Returns session Storage based on the document origin (hostname/port).
See localStorage above.

Interaction

browser.onalert(fn)

Called by window.alert with the message. If you just want to know if
an alert was shown, you can also use prompted (see below).

browser.onconfirm(question, response)�

browser.onconfirm(fn)�

The first form specifies a canned response to return when��
window.confirm is called with that question. The second form will
call the function with the question and use the respone of the first�
function to return a value (true or false).

The response to the question can be true or false, so all canned
responses are converted to either value. If no response available, returns
false.

For example:

browser.onconfirm(�"Are you sure?", true)

browser.onprompt(message, response)

browser.onprompt(fn)

The first form specifies a canned response to return when��
window.prompt is called with that message. The second form will call
the function with the message and default value and use the response of
the first function to return a value or false.�

The response to a prompt can be any value (converted to a string), false

The Zombie API 24

to indicate the user cancelled the prompt (returning null), or nothing to
have the prompt return the default value or an empty string.

For example:

browser.onprompt(function(message) { return Math.random() })

browser.prompted(message) => boolean

Returns true if user was prompted with that message by a previous call
to window.alert, window.confirm or window.prompt.

Events

Since events may execute asynchronously (e.g. XHR requests, timers),
the browser maintains an event queue. Occasionally you will need to let
the browser execute all the queued events before proceeding. This is
done by calling wait, or one of the many methods that accept a
callback.

In addition the browser is also an EventEmitter. You can register any
number of event listeners to any of the emitted events.

browser.fire(name, target, calback?)�

Fires a DOM event. You can use this to simulate a DOM event, e.g.
clicking a link or clicking the mouse. These events will bubble up and
can be cancelled.

The first argument it the event name (e.g. �click), the second argument
is the target element of the event. With a callback, this method will
transfer control to the callback after running all events.

browser.wait(callback)

browser.wait(duration, callback)

Waits for the browser to complete loading resources and processing
JavaScript events. When done, calls the callback with null and browser.

The Zombie API 25

With duration as the first argument, this method waits for the�
specified time (in milliseconds) and any resource/JavaScript to complete�
processing.

Without duration, Zombie makes best judgement by waiting up to 5
seconds for the page to load resources (scripts, XHR requests, iframes),
process DOM events, and fire timeouts events.�

You can also call wait with no callback and simply listen to the done
and error events getting fired.�

Event: 'done'

function (browser) { }

Emitted whenever the event queue goes back to empty.

Event: 'error'

function (error) { }

Emitted if an error occurred loading a page or submitting a form.

Event: 'loaded'

function (browser) { }

Emitted whenever new page loaded. This event is emitted before
DOMContentLoaded.

Debugging

When trouble strikes, refer to these functions and the troubleshooting
guide.

browser.dump()

Dump information to the console: Zombie version, current URL,
history, cookies, event loop, etc. Useful for debugging and submitting
error reports.

The Zombie API 26

file:///Users/assaf/projects/zombie/html/troubleshoot

browser.lastError : Object

Returns the last error received by this browser in lieu of response.

browser.lastRequest : Object

Returns the last request sent by this browser.

browser.lastResponse : Object

Returns the last response received by this browser.

browser.log(arguments)

browser.log(function)

Call with multiple arguments to spit them out to the console when
debugging enabled (same as console.log). Call with function to spit
out the result of that function call when debugging enabled.

browser.resources : Object

Returns a list of resources loaded by the browser.

browser.viewInBrowser(name?)

Views the current document in a real Web browser. Uses the default
system browser on OS X, BSD and Linux. Probably errors on
Windows.

Zombie.js brought to you by very alive people.

The Zombie API 27

https://github.com/assaf/zombie/contributors

Zombie.js

CSS Selectors

Zombie.js uses Sizzle.js which provides support for most CSS 3 selectors
with a few useful extension.

Sizzle.js is the selector engine used in jQuery, so if you're familiar with
jQuery selectors, you're familiar with Sizzle.js.

The following list summarizes which selectors are currently supported:

* Any element

E An element of type E

E#myid An E element with ID equal to "myid"

E.foo An E element whose class is "foo"

E[foo] An E element with a "foo" attribute

E[foo="bar"] An E element whose "foo" attribute value is exactly
equal to "bar"

E[foo!="bar"] An E element whose "foo" attribute value does not
equal to "bar"

E[foo~="bar"] An E element whose "foo" attribute value is a list of
whitespace-separated values, one of which is exactly equal to "bar"

E[foo^="bar"] An E element whose "foo" attribute value begins
exactly with the string "bar"

E[foo$="bar"] An E element whose "foo" attribute value ends
exactly with the string "bar"

E[foo*="bar"] An E element whose "foo" attribute value contains
the substring "bar"

CSS Selectors 28

file:///
https://github.com/jeresig/sizzle/wiki
http://www.w3.org/TR/css3-selectors/

E[foo|="en"] An E element whose "foo" attribute has a hyphen-
separated list of values beginning (from the left) with "en"

E:nth-child(n) An E element, the n-th child of its parent

E:first-child An E element, first child of its parent�

E:last-child An E element, last child of its parent

E:only-child An E element, only child of its parent

E:empty An E element that has no children (including text nodes)

E:link A link

E:focus An E element during certain user actions

E:enabled A user interface element E which is enabled

E:disabled A user interface element E which is disabled

E:checked A user interface element E which is checked (for instance a
radio-button or checkbox)

E:input An E element that is an input element (includes textarea,
select and button)

E:text An E element that is an input text field or text area�

E:checkbox An E element that is an input checkbox

E:file An E element that is an input file�

E:password An E element that is an input password

E:submit An E element that is an input or button of type submit

E:image An E element that is an input of type image

E:button An E element that is an input or button of type button

E:reset An E element that is an input or button of type reset

CSS Selectors 29

E:header An header element, one of h1, h2, h3, h4, h5, h6

E:parent A parent element, an element that contains another element

E:not(s) An E element that does not match the selector s (multiple
selectors supported)

E:contains(t) An E element whose textual contents contains t (case
sensitive)

E:first An E element whose position on the page is first in document�
order

E:last An E element whose position on the page is last in document
order

E:even An E element whose position on the page is even numbered
(counting starts at 0)

E:odd An E element whose position on the page is odd numbered
(counting starts at 0)

E:eq(n)/:nth(n) An E element whose Nth element on the page (e.g
:eq(5))

E:lt(n) An E element whose position on the page is less than n

E:gt(n) An E element whose position on the page is less than n

E F An F element descendant of an E element

E > F An F element child of an E element

E + F An F element immediately preceded by an E element

E ~ F An F element preceded by an E element

Zombie.js brought to you by very alive people.

CSS Selectors 30

https://github.com/assaf/zombie/contributors

Zombie.js

Troubleshooting guide

The Dump

Get the browser to dump its current state. You'll be able to see the
current document URL, history, cookies, local/session storage, and
portion of the current page:

browser.dump()

URL: http://localhost:3003/here/#there

History:
 1. http://localhost:3003/here
 2: http://localhost:3003/here/#there

Cookies:
 session=e62ab205; domain=localhost; path=/here

Storage:
 localhost:3003 session:
 day = Monday

Document:
 <html>
 <head>
 <script src="/jquery.js"></script>
 <script src="/sammy.js"></script>
 <script src="/app.js"></script>
 </head>
 <body>
 ...

Troubleshooting guide 31

file:///

The actual report will have much more information.

Debugging

When running in debug mode, Zombie.js will spit out messages to the
console. These could help you see what's going on as your tests execute,
especially useful around stuff that happens in the background, like
XHR requests.

To turn debugging on/off set browser.debug to true/false. You can
also set this option when creating a new Browser object (the
constructor takes an options argument), or for the duration of a single
call to visit (the second argument being the options).

For example:

zombie.visit("http://thedead", { debug: true}, function(err, browser) {
 console.log(browser.errors);
 ...
});

If you're working on the code and you want to add more debug
statements, call browser.log with any sequence of arguments (same as
console.log), or with a function. In the later case, it will call the
function only when debugging is turned on, and spit the value returned
from the console.

For example:

browser.log("Currently visiting", browser.location);
browser.log(function() {
 return "Currently visiting " + browser.location;
});

Request/response

Each window keeps a trail of every resource request it makes (to load
the page itself, scripts, XHR requests, etc). You can inspect these by

Troubleshooting guide 32

obtaining the window.resources array and looking into it.

For example:

browser.resources.dump()

The browser object provides the convenient methods lastRequest,
lastResponse and lastError that return, respectively, the request,
response and error associated with the last resources loaded by the
current window.

Zombie.js brought to you by very alive people.

Troubleshooting guide 33

https://github.com/assaf/zombie/contributors

	Table of Content
	Zombie.js
	The Bite
	Infection
	Walking
	Hunting
	Feeding
	Readiness
	In The Family
	Reporting Glitches
	Giving Back
	Brains
	See Also

	The Zombie API
	The Browser
	new zombie.Browser(options?) : Browser
	Browser Options
	browser.visit(url, callback)
	browser.visit(url, options, callback)
	browser.open() : Window
	browser.window : Window
	browser.error : Error
	browser.errors : Array

	Document Content
	browser.body : Element
	browser.document : Document
	browser.evaluate(expr) : Object
	browser.html(selector?, context?) : String
	browser.queryAll(selector, context?) : Array
	browser.query(selector, context?) : Element
	browser.text(selector, context?) : String
	browser.xpath(expression, context?) => XPathResult

	Navigation
	browser.clickLink(selector, callback)
	browser.link(selector) : Element
	browser.location : Location
	browser.location = url
	browser.statusCode : Number
	browser.success : Boolean
	browser.visit(url, callback)
	browser.visit(url, options, callback)
	browser.redirected : Boolean

	Forms
	browser.attach(selector, filename, callback) : this
	browser.check(field, callback) : this
	browser.choose(field, callback) : this
	browser.field(selector) : Element
	browser.fill(field, value, callback) : this
	browser.button(selector) : Element
	browser.pressButton(selector, callback)
	browser.select(field, value, callback) : this
	browser.selectOption(option, callback) : this
	browser.uncheck(field, callback) : this
	browser.unselect(field, value, callback) : this
	browser.unselectOption(option, callback) : this

	State Management
	browser.cookies(domain, path?) : Cookies
	browser.fork() : Browser
	browser.loadCookies(String)
	browser.loadHistory(String)
	browser.loadStorage(String)
	browser.localStorage(host) : Storage
	browser.saveCookies() : String
	browser.saveHistory() : String
	browser.saveStorage() : String
	browser.sessionStorage(host) : Storage

	Interaction
	browser.onalert(fn)
	browser.onconfirm(question, response)
	browser.onconfirm(fn)
	browser.onprompt(message, response)
	browser.onprompt(fn)
	browser.prompted(message) => boolean

	Events
	browser.fire(name, target, calback?)
	browser.wait(callback)
	browser.wait(duration, callback)
	Event: 'done'
	Event: 'error'
	Event: 'loaded'

	Debugging
	browser.dump()
	browser.lastError : Object
	browser.lastRequest : Object
	browser.lastResponse : Object
	browser.log(arguments)
	browser.log(function)
	browser.resources : Object
	browser.viewInBrowser(name?)

	CSS Selectors
	Troubleshooting guide
	The Dump
	Debugging
	Request/response

