Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x 18x | import type { Camera } from '../Camera'; import { Ray, Matrix4, Vector3 } from "../math"; import { Sphere, Cylinder, Triangle } from "../shapes"; const descSort = (a: { distance: number; }, b: { distance: number; }) => { return a.distance - b.distance; }; const viewProjectionMatrix = new Matrix4(); export class Raycaster { ray: Ray; near: number; far: number; precision = 0.0001; linePrecision = 0.2; constructor(origin: Vector3 | undefined, direction: Vector3 | undefined, far?: number, near?: number) { this.ray = new Ray(origin, direction); Iif (this.ray.direction.lengthSq() > 0) this.ray.direction.normalize(); this.near = near || 0; this.far = far || Infinity; } set(origin: Vector3, direction: Vector3): void { this.ray.set(origin, direction); } setFromCamera(coords: { x: any; y: any; z: any; }, camera: Camera): void { if (!camera.ortho) { this.ray.origin.setFromMatrixPosition(camera.matrixWorld); this.ray.direction.set(coords.x, coords.y, coords.z); camera.projectionMatrixInverse.getInverse(camera.projectionMatrix); viewProjectionMatrix.multiplyMatrices( camera.matrixWorld, camera.projectionMatrixInverse ); this.ray.direction.applyProjection(viewProjectionMatrix); this.ray.direction.sub(this.ray.origin).normalize(); } else { this.ray.origin .set( coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far) ) .unproject(camera); this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld); } } intersectObjects(group: any, objects: string | any[]) { var intersects: any[] = []; for (var i = 0, l = objects.length; i < l; i++) intersectObject(group, objects[i], this, intersects); intersects.sort(descSort); return intersects; } } // [-1, 1] const clamp = (x: number): number => { return Math.min(Math.max(x, -1), 1); }; var sphere = new Sphere(); var cylinder = new Cylinder(); var triangle = new Triangle(); var w_0 = new Vector3(); // for cylinders, cylinder.c1 - ray.origin var v1 = new Vector3(); // all purpose local vector var v2 = new Vector3(); var v3 = new Vector3(); //var facePlane = new $3Dmol.Plane(); var matrixPosition = new Vector3(); //object is a Sphere or (Bounding) Box export function intersectObject(group: { matrixWorld: Matrix4; }, clickable: { intersectionShape: any; boundingSphere: Sphere | undefined; }, raycaster: Raycaster, intersects: any[]) { matrixPosition.getPositionFromMatrix(group.matrixWorld); Iif (clickable.intersectionShape === undefined) return intersects; var intersectionShape = clickable.intersectionShape; var precision = raycaster.linePrecision; precision *= group.matrixWorld.getMaxScaleOnAxis(); var precisionSq = precision * precision; //Check for intersection with clickable's bounding sphere, if it exists Iif ( clickable.boundingSphere !== undefined && clickable.boundingSphere instanceof Sphere ) { sphere.copy(clickable.boundingSphere); sphere.applyMatrix4(group.matrixWorld); Iif (!raycaster.ray.isIntersectionSphere(sphere)) { return intersects; } } //Iterate through intersection objects var i, il, norm, normProj, cylProj, rayProj, distance, closestDistSq, denom, discriminant, s, t, s_c, t_c; //triangle faces for (i = 0, il = intersectionShape.triangle.length; i < il; i++) { Iif (intersectionShape.triangle[i] instanceof Triangle) { triangle.copy(intersectionShape.triangle[i]); triangle.applyMatrix4(group.matrixWorld); norm = triangle.getNormal(); normProj = raycaster.ray.direction.dot(norm); //face culling Iif (normProj >= 0) continue; w_0.subVectors(triangle.a, raycaster.ray.origin); distance = norm.dot(w_0) / normProj; Iif (distance < 0) continue; //intersects with plane, check if P inside triangle v1.copy(raycaster.ray.direction) .multiplyScalar(distance) .add(raycaster.ray.origin); v1.sub(triangle.a); // from pt a to intersection point P v2.copy(triangle.b).sub(triangle.a); // from pt a to b v3.copy(triangle.c).sub(triangle.a); // from pt a to c var b_dot_c = v2.dot(v3); var b_sq = v2.lengthSq(); var c_sq = v3.lengthSq(); // P = A + s(v2) + t(v3), inside trianle if 0 <= s, t <=1 and (s + t) <=0 t = (b_sq * v1.dot(v3) - b_dot_c * v1.dot(v2)) / (b_sq * c_sq - b_dot_c * b_dot_c); Iif (t < 0 || t > 1) continue; s = (v1.dot(v2) - t * b_dot_c) / b_sq; if (s < 0 || s > 1 || s + t > 1) continue; else { intersects.push({ clickable: clickable, distance: distance }); } } } //cylinders for (i = 0, il = intersectionShape.cylinder.length; i < il; i++) { Iif (intersectionShape.cylinder[i] instanceof Cylinder) { cylinder.copy(intersectionShape.cylinder[i]); cylinder.applyMatrix4(group.matrixWorld); w_0.subVectors(cylinder.c1, raycaster.ray.origin); cylProj = w_0.dot(cylinder.direction); // Dela rayProj = w_0.dot(raycaster.ray.direction); // Epsilon normProj = clamp(raycaster.ray.direction.dot(cylinder.direction)); // Beta denom = 1 - normProj * normProj; Iif (denom === 0.0) continue; s_c = (normProj * rayProj - cylProj) / denom; t_c = (rayProj - normProj * cylProj) / denom; v1.copy(cylinder.direction).multiplyScalar(s_c).add(cylinder.c1); // Q_c v2.copy(raycaster.ray.direction) .multiplyScalar(t_c) .add(raycaster.ray.origin); // P_c closestDistSq = v3.subVectors(v1, v2).lengthSq(); var radiusSq = cylinder.radius * cylinder.radius; //Smoothing? //if (closestDistSq > radiusSq) radiusSq += precisionSq; // closest distance between ray and cylinder axis not greater than cylinder radius; // might intersect this cylinder between atom and bond midpoint Iif (closestDistSq <= radiusSq) { //Find points where ray intersects sides of cylinder discriminant = (normProj * cylProj - rayProj) * (normProj * cylProj - rayProj) - denom * (w_0.lengthSq() - cylProj * cylProj - radiusSq); // ray tangent to cylinder? if (discriminant <= 0) t = distance = Math.sqrt(closestDistSq); else t = distance = (rayProj - normProj * cylProj - Math.sqrt(discriminant)) / denom; //find closest intersection point; make sure it's between atom's position and cylinder midpoint s = normProj * t - cylProj; //does not intersect cylinder between atom and midpoint, // or intersects cylinder behind camera if (s < 0 || s * s > cylinder.lengthSq() || t < 0) continue; else intersects.push({ clickable: clickable, distance: distance }); } } } //lines for (i = 0, il = intersectionShape.line.length; i < il; i += 2) { v1.copy(intersectionShape.line[i]); v1.applyMatrix4(group.matrixWorld); v2.copy(intersectionShape.line[i + 1]); v2.applyMatrix4(group.matrixWorld); v3.subVectors(v2, v1); var bondLengthSq = v3.lengthSq(); v3.normalize(); w_0.subVectors(v1, raycaster.ray.origin); var lineProj = w_0.dot(v3); rayProj = w_0.dot(raycaster.ray.direction); normProj = clamp(raycaster.ray.direction.dot(v3)); denom = 1 - normProj * normProj; Iif (denom === 0.0) continue; s_c = (normProj * rayProj - lineProj) / denom; t_c = (rayProj - normProj * lineProj) / denom; v1.add(v3.multiplyScalar(s_c)); // Q_c v2.copy(raycaster.ray.direction) .multiplyScalar(t_c) .add(raycaster.ray.origin); // P_c closestDistSq = v3.subVectors(v2, v1).lengthSq(); Iif (closestDistSq < precisionSq && s_c * s_c < bondLengthSq) intersects.push({ clickable: clickable, distance: t_c }); } for (i = 0, il = intersectionShape.sphere.length; i < il; i++) { //sphere Iif (intersectionShape.sphere[i] instanceof Sphere) { sphere.copy(intersectionShape.sphere[i]); sphere.applyMatrix4(group.matrixWorld); Iif (raycaster.ray.isIntersectionSphere(sphere)) { v1.subVectors(sphere.center, raycaster.ray.origin); //distance from ray origin to point on the ray normal to sphere's center //must be less than sphere's radius (since ray intersects sphere) var distanceToCenter = v1.dot(raycaster.ray.direction); discriminant = distanceToCenter * distanceToCenter - (v1.lengthSq() - sphere.radius * sphere.radius); //Don't select if sphere center behind camera Iif (distanceToCenter < 0) return intersects; //ray tangent to sphere? if (discriminant <= 0) distance = distanceToCenter; //This is reversed if sphere is closer than ray origin. Do we have //to worry about handling that case? else distance = distanceToCenter - Math.sqrt(discriminant); intersects.push({ clickable: clickable, distance: distance }); } } } return intersects; }; |