ModelXModel

DeepLearningClassification

const independentVariables = [ 'sepal_length_cm', 'sepal_width_cm', 'petal_length_cm', 'petal_width_cm', ]; const dependentVariables = [ 'plant_Iris-setosa', 'plant_Iris-versicolor', 'plant_Iris-virginica', ]; const columns = independentVariables.concat(dependentVariables); let housingDataCSV; let DataSet; let x_matrix; let y_matrix; let nnClassification; let nnClassificationModel; const fit = { epochs: 100, batchSize: 5, }; const encodedAnswers = { 'Iris-setosa': [1, 0, 0, ], 'Iris-versicolor': [0, 1, 0, ], 'Iris-virginica': [0, 0, 1, ], }; const input_x = [ [5.1, 3.5, 1.4, 0.2, ], [6.3,3.3,6.0,2.5, ], [5.6, 3.0, 4.5, 1.5, ], [5.0, 3.2, 1.2, 0.2, ], [4.5, 2.3, 1.3, 0.3, ], ]; function scaleColumnMap(columnName) { return { name: columnName, options: { strategy: 'scale', scaleOptions: { strategy:'standard', }, }, }; } /** @test {DeepLearningClassification} */ describe('DeepLearningClassification', function () { beforeAll(async function () { /** * encodedData = [ * { sepal_length_cm: 5.1, sepal_width_cm: 3.5, petal_length_cm: 1.4, petal_width_cm: 0.2, plant: 'Iris-setosa', 'plant_Iris-setosa': 1, 'plant_Iris-versicolor': 0, 'plant_Iris-virginica': 0 }, ... { sepal_length_cm: 5.9, sepal_width_cm: 3, petal_length_cm: 4.2, petal_width_cm: 1.5, plant: 'Iris-versicolor', 'plant_Iris-setosa': 0, 'plant_Iris-versicolor': 1, 'plant_Iris-virginica': 0 }, ]; */ housingDataCSV = await ms.csv.loadCSV(path.join(__dirname,'/test/mock/data/iris_data.csv')); DataSet = new ms.DataSet(housingDataCSV); // DataSet.fitColumns({ // columns: columns.map(scaleColumnMap), // returnData:false, // }); const encodedData = DataSet.fitColumns({ columns: [ { name: 'plant', options: { strategy: 'onehot', }, }, ], returnData:true, }); x_matrix = DataSet.columnMatrix(independentVariables); y_matrix = DataSet.columnMatrix(dependentVariables); /* x_matrix = [ [ 5.1, 3.5, 1.4, 0.2 ], [ 4.9, 3, 1.4, 0.2 ], [ 4.7, 3.2, 1.3, 0.2 ], ... ]; y_matrix = [ [ 1, 0, 0 ], [ 1, 0, 0 ], [ 1, 0, 0 ], ... ] */ // console.log({ x_matrix, y_matrix, }); nnClassification = new DeepLearningClassification({ fit, }); nnClassificationModel = await nnClassification.train(x_matrix, y_matrix); },120000); const predictions = await nnClassification.predict(input_x); const answers = await nnClassification.predict(input_x, { probability:false, }); const shape = nnClassification.getInputShape(predictions);

    

TextEmbedding

      const TextEmbedder = new ModelXModel.TextEmbedding();
      await TextEmbedder.train();
      const sentences = [
        'Hello.',
        'How are you?',
      ];
      const predictions = await TextEmbedder.predict(sentences);