All files / src/plugins _transforms.ts

6.45% Statements 8/124
0% Branches 0/98
0% Functions 0/17
6.45% Lines 8/124
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 3481x 1x 1x                 1x                                                                         1x                                                 1x                                                                                 1x                                                                                                                                                                                                                                                                                                                                 1x                                                                                                                                                
const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
const regTransformSplit = /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
 
/**
 * Convert transform string to JS representation.
 *
 * @param {String} transformString input string
 * @param {Object} params plugin params
 * @return {Array} output array
 */
export function transform2js(transformString) {
  // JS representation of the transform data
  const transforms = [];
  // current transform context
  let current;
 
  // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
  transformString.split(regTransformSplit).forEach(function(item) {
    let num;
    if (item) {
      // if item is a translate function
      if (regTransformTypes.test(item)) {
        // then collect it and change current context
        transforms.push((current = { name: item }));
        // else if item is data
      } else {
        // then split it into [10, 50] and collect as context.data
        while ((num = regNumericValues.exec(item))) {
          num = Number(num);
          if (current.data) {
            current.data.push(num);
          } else {
            current.data = [num];
          }
        }
      }
    }
  });
  return transforms;
}
 
/**
 * Multiply transforms into one.
 *
 * @param {Array} input transforms array
 * @return {Array} output matrix array
 */
export function transformsMultiply(transforms) {
  // convert transforms objects to the matrices
  transforms = transforms.map(function(transform) {
    if (transform.name === 'matrix') {
      return transform.data;
    }
    return transformToMatrix(transform);
  });
 
  // multiply all matrices into one
  transforms = {
    name: 'matrix',
    data: transforms.reduce(function(a, b) {
      return multiplyTransformMatrices(a, b);
    }),
  };
 
  return transforms;
}
 
/**
 * Do math like a school girl.
 *
 * @type {Object}
 */
export const mth = {
  rad: function(deg) {
    return deg * Math.PI / 180;
  },
 
  deg: function(rad) {
    return rad * 180 / Math.PI;
  },
 
  cos: function(deg) {
    return Math.cos(this.rad(deg));
  },
 
  acos: function(val, floatPrecision) {
    return +this.deg(Math.acos(val)).toFixed(floatPrecision);
  },
 
  sin: function(deg) {
    return Math.sin(this.rad(deg));
  },
 
  asin: function(val, floatPrecision) {
    return +this.deg(Math.asin(val)).toFixed(floatPrecision);
  },
 
  tan: function(deg) {
    return Math.tan(this.rad(deg));
  },
 
  atan: function(val, floatPrecision) {
    return +this.deg(Math.atan(val)).toFixed(floatPrecision);
  },
};
 
/**
 * Decompose matrix into simple transforms. See
 * http://www.maths-informatique-jeux.com/blog/frederic/?post/2013/12/01/Decomposition-of-2D-transform-matrices
 *
 * @param {Object} data matrix transform object
 * @return {Object|Array} transforms array or original transform object
 */
export function matrixToTransform(transform, params) {
  const floatPrecision = params.floatPrecision;
  const data = transform.data;
  const transforms = [];
  let sx = +Math.sqrt(data[0] * data[0] + data[1] * data[1]).toFixed(
    params.transformPrecision,
  );
  let sy = +((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
    params.transformPrecision,
  );
  const colsSum = data[0] * data[2] + data[1] * data[3];
  const rowsSum = data[0] * data[1] + data[2] * data[3];
  const scaleBefore = rowsSum || +(sx == sy);
 
  // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
  if (data[4] || data[5]) {
    transforms.push({
      name: 'translate',
      data: data.slice(4, data[5] ? 6 : 5),
    });
  }
 
  // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
  if (!data[1] && data[2]) {
    transforms.push({
      name: 'skewX',
      data: [mth.atan(data[2] / sy, floatPrecision)],
    });
 
    // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
  } else if (data[1] && !data[2]) {
    transforms.push({
      name: 'skewY',
      data: [mth.atan(data[1] / data[0], floatPrecision)],
    });
    sx = data[0];
    sy = data[3];
 
    // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
    // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
  } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
    if (!scaleBefore) {
      sx =
        (data[0] < 0 ? -1 : 1) *
        Math.sqrt(data[0] * data[0] + data[2] * data[2]);
      sy =
        (data[3] < 0 ? -1 : 1) *
        Math.sqrt(data[1] * data[1] + data[3] * data[3]);
      transforms.push({ name: 'scale', data: [sx, sy] });
    }
    const rotate = [
      mth.acos(data[0] / sx, floatPrecision) * (data[1] * sy < 0 ? -1 : 1),
    ];
 
    if (rotate[0]) {
      transforms.push({ name: 'rotate', data: rotate });
    }
 
    if (rowsSum && colsSum) {
      transforms.push({
        name: 'skewX',
        data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
      });
    }
 
    // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
    if (rotate[0] && (data[4] || data[5])) {
      transforms.shift();
      const cos = data[0] / sx;
      const sin = data[1] / (scaleBefore ? sx : sy);
      const x = data[4] * (scaleBefore || sy);
      const y = data[5] * (scaleBefore || sx);
      const denom =
        (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) * (scaleBefore || sx * sy);
      rotate.push(((1 - cos) * x - sin * y) / denom);
      rotate.push(((1 - cos) * y + sin * x) / denom);
    }
 
    // Too many transformations, return original matrix if it isn't just a scale/translate
  } else if (data[1] || data[2]) {
    return transform;
  }
 
  if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length) {
    transforms.push({
      name: 'scale',
      data: sx == sy ? [sx] : [sx, sy],
    });
  }
 
  return transforms;
}
 
/**
 * Convert transform to the matrix data.
 *
 * @param {Object} transform transform object
 * @return {Array} matrix data
 */
function transformToMatrix(transform) {
  if (transform.name === 'matrix') {
    return transform.data;
  }
 
  let matrix: [number, number, number, number, number, number];
 
  switch (transform.name) {
    case 'translate':
      // [1, 0, 0, 1, tx, ty]
      matrix = [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
      break;
    case 'scale':
      // [sx, 0, 0, sy, 0, 0]
      matrix = [
        transform.data[0],
        0,
        0,
        transform.data[1] || transform.data[0],
        0,
        0,
      ];
      break;
    case 'rotate':
      // [cos(a), sin(a), -sin(a), cos(a), x, y]
      const cos = mth.cos(transform.data[0]);
      const sin = mth.sin(transform.data[0]);
      const cx = transform.data[1] || 0;
      const cy = transform.data[2] || 0;
 
      matrix = [
        cos,
        sin,
        -sin,
        cos,
        (1 - cos) * cx + sin * cy,
        (1 - cos) * cy - sin * cx,
      ];
      break;
    case 'skewX':
      // [1, 0, tan(a), 1, 0, 0]
      matrix = [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
      break;
    case 'skewY':
      // [1, tan(a), 0, 1, 0, 0]
      matrix = [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
      break;
  }
 
  return matrix;
}
 
/**
 * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
 * by the transformation matrix and use a singular value decomposition to represent in a form
 * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
 * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
 *
 * @param {Array} arc [a, b, rotation in deg]
 * @param {Array} transform transformation matrix
 * @return {Array} arc transformed input arc
 */
export function transformArc(arc, transform) {
  let a = arc[0];
  let b = arc[1];
  const rot = arc[2] * Math.PI / 180;
  const cos = Math.cos(rot);
  const sin = Math.sin(rot);
  let h =
    Math.pow(arc[5] * cos + arc[6] * sin, 2) / (4 * a * a) +
    Math.pow(arc[6] * cos - arc[5] * sin, 2) / (4 * b * b);
  if (h > 1) {
    h = Math.sqrt(h);
    a *= h;
    b *= h;
  }
  const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
  const m = multiplyTransformMatrices(transform, ellipse);
  // Decompose the new ellipse matrix
  const lastCol = m[2] * m[2] + m[3] * m[3];
  const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
  const root = Math.sqrt(
    (Math.pow(m[0] - m[3], 2) + Math.pow(m[1] + m[2], 2)) *
      (Math.pow(m[0] + m[3], 2) + Math.pow(m[1] - m[2], 2)),
  );
 
  if (!root) {
    // circle
    arc[0] = arc[1] = Math.sqrt(squareSum / 2);
    arc[2] = 0;
  } else {
    const majorAxisSqr = (squareSum + root) / 2;
    const minorAxisSqr = (squareSum - root) / 2;
    const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
    const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
    const rowsSum = m[0] * m[2] + m[1] * m[3];
    const term1 = m[0] * sub + m[2] * rowsSum;
    const term2 = m[1] * sub + m[3] * rowsSum;
    arc[0] = Math.sqrt(majorAxisSqr);
    arc[1] = Math.sqrt(minorAxisSqr);
    arc[2] =
      ((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
      Math.acos(
        (major ? term1 : term2) / Math.sqrt(term1 * term1 + term2 * term2),
      ) *
      180 /
      Math.PI;
  }
 
  if (transform[0] < 0 !== transform[3] < 0) {
    // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
    arc[4] = 1 - arc[4];
  }
 
  return arc;
}
 
/**
 * Multiply transformation matrices.
 *
 * @param {Array} a matrix A data
 * @param {Array} b matrix B data
 * @return {Array} result
 */
function multiplyTransformMatrices(a, b) {
  return [
    a[0] * b[0] + a[2] * b[1],
    a[1] * b[0] + a[3] * b[1],
    a[0] * b[2] + a[2] * b[3],
    a[1] * b[2] + a[3] * b[3],
    a[0] * b[4] + a[2] * b[5] + a[4],
    a[1] * b[4] + a[3] * b[5] + a[5],
  ];
}