Browsix

A UNIX-like process-model and kernel for the browser

Bobby Powers
bobbypowers@gmail.com

ABSTRACT

This paper introduces Browsix, a UNIX-like processing model,
monolithic kernel, shell, and userspace designed to run in
modern web browsers.

1. INTRODUCTION

As noted by Vilk et al., web browsers have become a de facto
universal operating system and attractive platform for appli-
cation developers|[3]. Browsers expose a rich range of services
to programs, such as child-process and network 10, and are
continuing to expand the range of functionality they provide
to web applications through additonal Javascript APIs, in-
cluding primitive cooperative multitasking[1] and low-level
hardware interaction like Bluetooth[4]. Despite all of this,
the document object model (DOM) and event-based pro-
gramming model provided by the browser are both a foreign
and resource contstrained system compared to what the ma-
jority of developers are used to. Traditional JavaScript exe-
cution competes with in-browser work like layout and paint-
ing for CPU time in the single event loop of the browser.
This is partially addressed by Web Workers, but the asyn-
chronous nature of communication with Web Workers com-
bined with the restrictions for what can run in them make
them tedius to work with.

Javascript and its event-based programming model have be-
come popular outside of web browsers - node.js (sometimes
referred to as just node) is the canonical example. node.js
enables the creation of high performance web servers by
pairing fast single-threaded execution of JavaScript code
by the V8 Javascript engine with asynchronous APIs for
resources like the file system, network, and process man-
agement. Souci and Lemaire[2] provide a good overview of
node’s architecture.

There have been multiple attempts to bring node’s APIs
to the Browser. As part of Vilk et al.’s work on Doppio,
an in-browser JVM, several large node APIs were ported
to the browser, most notably the fs (filesystem) module.

Craig Greenberg
g7h0uBh7@gmail.com

The fs module is available as a Doppio sub-project named
BrowserF'S. BrowserFS provides multiple file system back-
end implementations, such as an in-memory, XMLHttpRe-
quest, dropbox and an overlay filesystem. This project is
roughly structured like the Linux VFS - all of these dis-
parate backends are accessible through a unified API that
implements the interface specified by the node fs module.
In this project we use BrowserF'S to provide a shared filesys-
tem to all of our processes.

In addition to Doppio and BrowserF'S, there are tools de-
signed to let developers program against node APIs and
use node’s synchronous require(’$module’) module sys-

tem. These tools provide a compilation-like step where JavaScript

source programs are parsed, transitive dependencies resolved,
and all of the required code are bundled into a single JavaScript
file. As part of this, tools provide implementations of node
modules, such as the buffer and http modules. Examples of
this approach are Browserify, WebPack and rollup.js. These
projects typically restrict the APIs they provide to those
that can be cleanly implemented on top of browser APIs.
For example, Browserify provides a http module, but only
implements the client side of the API.

This project has several contributions:

e An implementation of a traditional monolithic UNIX-
like kernel, userspace, and syscall abstractions in the
browser, utilizing the Web Workers API. We refer to
this as the process model, and it includes asynchronous
delivery of signals like SIGCHLD.

e A port of the node.js programming environment to the
browser on top of our process model, including the
ability to spawn child processes. We call this browser-
node.

e A collection of traditional UNIX utilities, implemented
as node.js applications in TypeScript. These utilities
run unmodified in both our browser environment and
under node.js on Mac OS X and Linux.

e A bash-like shell that enables the composition of util-
ities into pipelines (sometimes called filters).

e A web-based Ul (terminal) for interacting with this
shell that works in all modern browsers.

Combined, these contributions form the Browsix program-
ming environment.

Browsix
Utilities

» 4
node.js browser-node
Browsix kernel
POSIX OS
Web Browser

POSIX OS

Figure 1: Utilities implemented for Browsix were
designed to run in 2 execution environments -
node.js on a traditional OS, as well as in a browser
through browser-node and the Browsix kernel.

2. APPROACH

In order to enable utilities to be tested and debugged inde-
pendently of our kernel and process model implementation,
all utilities were implemented as standard node.js applica-
tions depending only on the node.js standard library, with
two small exceptions. The shell needs the ability to cre-
ate UNIX pipes using the pipe(2) syscall. node.js uses
pipes internally to communicate between threads, as well
as with a certain class of child processes, but this syscall is
not exposed anywhere in the node.js API. node.js does ex-
pose named pipes in its net module, but it was simpler to
develop a small package to expose an API allowing use of
pipe(2) from JavaScript and TypeScript. A similar choice
was made to develop a package to expose getpriority(2)
and setpriority(2), for use in nice(1).

To run these utilities in the browser, we developed browser-
node and the Browsix kernel. browser-node is a port of
node.js to our in-browser process model. browser-node uti-
lizes over a dozen of node.js’s pure-JavaScript modules di-
rectly. The only modifications to most of the node stdlib
were to remove the use of let and const (as Safari does not
support them), and to rewrite their require statements to be
local. The one exception was the internal/child_process
module. This was hand-modified to remove dependencies on
node’s networking libraries.

Some of the modules in the node stdlib, like >internal/util’
are self-contained - it doesn’t depend on any other mod-
ules, or the transitive set of dependencies only includes other
pure-JavaScript modules in the stdlib. However, many im-
portant modules make foreign function interface (FFI) calls
into C++ functions and methods that are part of the node
runtime. This set of C4++ functions and methods are col-
lectively reffered to as the bindings. browser-node provides

pure-JavaScript (written in TypeScript, then compiled to
JavaScript) implementations of these functions and meth-
ods. There are 2 major types of bindings that had to be
provided - those that exist for performance reasons, and
those that glue JavaScript to the underlying operating sys-
tem and libraries. There are some bindings, like those used
by the buffer module, that are written in C++ for per-
formance reasons, especially to avoid generating garbage.
Other bindings, like that for the fs module, perform syscalls
to the Browsix kernel, and invoke callbacks (back into the
node JavaScript libraries) after receiving responses.

A consequence of this approach is that only async APIs are
implemented. No synchronous APIs that require invoking a
system call, such as the methods ending in Sync in fs, are
available.

3. SYSTEM DESIGN

The system was designed as 5 major components: a kernel,
browser-node, a shell, UNIX utilities, and a Web Termi-
nal for the shell. This approach has led to a system that is
straightforward to extend, and is easy to compare to tradi-
tional UNIX programming environments in terms of behav-
ior.

3.1 Kernel

The kernel is modeled after a standard classic UNIX ker-
nel, with some inspiration taken from Linux. Its main data
members are a single shared filesystem tree provided by
BrowserF'S, along with a list of currently running and re-
cently exited processes. While BrowserF'S provides a single
filesystem root, there maybe several instantiated filesystems,
combined either through the use of an overlay filesystem or
through filesystem mountpoints.

The kernel communicates with process running in Web Work-
ers (referred to as userspace processes) over a MessagePort
provided by the browser. This has several consequences.
First, messages sent to and from Web Workers are copied,
resulting in a shared-nothing architecture. This combined
with the way workers are isolated and scheduled means that
the syscall roundtrip path is orders of magnitude more ex-
pensive than on modern operating systems like Linux. There
is a mechanism to transfer ownership of certain types of ob-
jects (notably ArrayBuffers), but this is an optimization that
is not used in this project. Second, because communication
with the worker is based on message passing and JavaScript
has no control over message buffer sizes or the schedulabil-
ity of the worker, there is no way to enforce that processes
do not continue to execute while waiting for the results of
a syscall from the kernel without cooperation. This is a
major point - worker processes are essentially cooperatively
scheduled with respect to the kernel.

There is a small ‘syscall layer (module) that lives in the
userspace process. It is useful to think of that as conceptu-
ally part of the kernel - it is the ABI that the kernel provides
to processes; processes do not need to know anything about
message passing, they simply invoke system calls, providing
a callback to receive the result as the final argument. The
syscall layer also provides a way to register for delivery of
signals, such as SIGCHLD.

Web Worker
Is
browser-node
JS API node API
bindings
syscall
1
V © MessagePort API
syscall
Kernel
shared tasks
filesystem
(BrowserFS) Task 1
R Task 2
pipes
DOM other JS
main JS environment

Figure 2: The Browsix stack.

3.1.1 Fork and Spawn

The traditional method of launching a child process on UNIX
is to invoke fork(2), perform some bookkeeping work in the
child (like closing unused FDs), and then calling execve (2)
to transfer control to a new executable. This approach is
untenable in the browser because of the use of fork — the
kernel doesn’t have control over the memory layout or stack
of WebWorkers.

Instead, we implement a new system call we call spawn.
Spawn is very similar to the node.js child_process.spawn
function. It allows a process to specify an executable to
run, the arguments to pass to that executable, along with
control over resources inherited by the new Task. Resouces
include file descriptors, the current working directory, and
the environment.

3.1.2 Task Scheduler

As Web Workers cannot be explicitly preempted by the ker-
nel, the kernel requires cooperation with processes to ensure
fairness. In this case the process is browser-node, not the
dozen-and-a-half utility programs. Priority is made addi-
tionally difficult by the single-threaded + event-based na-
ture of the browser environment. The Browsix kernel imple-
ments a fairly primitive scheduling algorithm, where each of
the 40 standard priority levels have their own queue. Each
queue is in turn checked for tasks, and the first runnable task
(where system call results are queued up) is chosen. This

can in theory result in starvation of lower-priority tasks, but
in practice has not been an issue.

3.2 browser-node

As discussed in the Approach section, browser-node provides
an execution environment for unmodified node.js programs
in the browser. The JavaScript-facing API of node is itself
written in JavaScript.

3.3 Shell

Taking inspiration from *nix systems, the shell was im-
plemented as a utility (see next section). Among the ad-
vantages of doing so is that the shell can be launched like
any other utility (including being lauched by other shell in-
stances). The shell is composed of six main components:

*

e Tokenize the input statement. This turned out to be
quite simple. Unlike more sophisticated shells that in-
clude the ‘>’ and ‘<’ redirect operators, the only op-
erator in our shell is pipe. This allowed us to simply
split the input statement into a series of commands
separated by pipe characters.

e Parse the token sequence into a sequence of commands.
Included in this step was simple path-expansion (lim-
ited to expanding paths to utilities) and syntax check-
ing (verifying that each pipe was surrounded by com-
mands).

e Setup pipes, a total of n-1 pipes joining n commands.
Each pipe consists of two file descriptors— one to a
read-only buffer and the other to a write-only buffer.
Piping one command to another simply required re-
placing stdin with the read file descriptor of the pipe
preceding the command and replacing stdout with the
write file descriptor of the pipe following the command.
The first command uses the process’s stdin and the last
command uses the process’s stdout.

e Spawn and execute children, which required the use
of the spawn system call as described above in the
subsection on Fork and Spawn.

e Collect exit codes and exit, returning a 0 exit code only
when all child processes returned a 0 exit code.

3.4 Utilities

As discussed above, a number of standard UNIX utilities
were implemented from scratch in TypeScript using stan-
dard node.js APIs. Of note was the use of node’s Stream ob-
jects rather than directly performing read (2)s and write(2)s
on file descriptors. This led us to implementations that feel
very at home in the node ecosystem, rather than looking
like transliterations of C programs. Additional information
is given in the Approach section above.

3.5 Web Terminal

The web terminal is implemented using Web Components
and the Polymer library. This allows us to define a single
new tag for use in the HTML of any application, where a
shell can be inserted in 2 lines, by first doing an HTML
import of the "browsix-terminal.html" file, and then by
placing one or multiple "<browsix-terminal>" tags on the

page. This terminal web component owns a kernel instance,
and invokes methods on the kernel to evaluate commands
and pipelines.

4. RESULTS

The resulting system provides a similar-feeling environment
to that of classic UNIX, BSD, and Plan9 systems, where
commands have minimal options and produce plain-text out-
put.

4.1 Scheduler

In order to ensure that higher-priority tasks are given prefer-
ence over other tasks, it was necessary to insert a small delay
between when a system call request comes in and when its
result is sent back to the client (currently 2 milliseconds).
Without this, priority isn’t preserved in the face of inter-
nal kernel callbacks scheduled with setInterval, and even
with this delay the scheduler test sometimes fails in Chrome
(but not Firefox). This could potentially be due to the more
complicated scheduling algorithm chrome implements in an
attempt to improve responsiveness.

The scheduler was able to be tested by use of a pair of pro-
grams written in TypeScript using node.js APIs. The first
program (named cpu-intensive-program) simulates a CPU
intensive program that does a mix of useful work and sys-
tem calls. It first adjusts its priority with a call to setpri-
ority(2), and then performs a chain of SHA1 digest com-
putations. The priority and number of loop iterations are
given as command line parameters. The second program,
called priority-test, spawns 2 children, each of which is an
instance of the the first program that differ only in their
priority. It then waits for both to complete and if the lower
priority (more nice) task completes first priority-test reports
an error and exits with a non-zero code, otherwise it exits
normally.

Because we implement the node child_process API, im-
plementing this test of priority scheduling that runs both on
the desktop and in the browser was trivial. A caveat was
that in order to have the test work reliably on the desktop,
it was necessary to simulate a single-processor environment.
Details for how to do this can be found as comments in the
source of the priority-test program.

5. DISCUSSION

A downside of the approach taken is that it doesn’t fit the
typical use case the Chrome and Firefox developer tools were
designed around. The BrowserFS file system pulls down
all of our utilities using XMLHttpRequests upon boot, and
stores the context as binary Buffers. When the Browsix
kernel receives a spawn system call, it requests the file from
the filesystem, and then must convert the text JavaScript
contents back into a UTF-8 string for execution in a Web
Worker. This process results in a Blob URL that is unique
each time a new Web Worker is started.

With regular scripts included with <script> tags and in
workers using importScripts, you can browse the script
source in the browser’s debugger and insert a breakpoint
that will be triggered the next time the given line is ex-
ecuted, even across page reloads. A result of using Blob

URLs is that the browser is unable to associate the text
being executed in a Web Worker with the original web re-
quest, and breakpoints do not persist across Web Worker
start/stop cycles. Additionally, our Web Workers run very
quickly, typically in well under 100 milliseconds, making it
very hard to manually hit the 'pause’ button in the debug-
ger. Chrome used to have a mechanism to pause a Web
Worker upon startup, but that has been removed in current
versions of Chrome.

To deal with this, kernel instances have a debug attribute.
If this evaluates to true, the kernel delays sending the init
message to a worker. The init message contains a processes
arguments and environment. With this, developers have
enough time to manually tell the browser to pause execution
in the Worker (which will happen when it receives the init
message).

5.1 Further work

The system call layer that browser-node uses to commu-
nicate with the kernel is not dependent on other parts of
browser-node. It should be possible to use this layer to port
other runtimes into this process model, such as the Doppio
JVM, emscripten apps built with the emterpreter option,
and GopherJS.

5.1.1 Terminal

The terminal currently works by taking a line of input, ex-
ecuting it as a shell, and displaying the results when the
command finishes. This is a fine first step, but interactive
UNIX programs (like the venerable ed) expect that their
stdin is hooked up to a terminal and that writes to stdout
appear on the terminal before program termination. We
don’t expect that implementing this functionality on top of
the existing project will require significant restructuring.

5.1.2 Pseudo-Filesystems

Linux and Plan9 before it expose a lot of functionality through
the filesystem, including devices, information on the process
tree, and hardware information. This is appealing because
programs that want to interact with devices or, for exam-
ple, the process tree don’t need to learn additional system
calls, they just need to read from specific files and directo-
ries. An interesting area for future work is providing access
to browser APIs to process in Web Workers through pseudo-
filesystems.

5.1.3 Scheduler

Additional integration with processes that run in workers,
like browser-node and Doppio would result in better schedul-
ing decisions. Doppio yields the main event loop for reasons
of interactivity using a set of heuristics, it would be pre-
ferrable for browser-node to do something similar. It would
also be useful to have a signal-like approach where the kernel
could inform a task that it should yield. Ideally, however,
the browser should expose the ability to change the OS-level
priority of Web Workers.

6. CONCLUSION

This paper introduced and described the Browsix program-
ming environment, including the kernel, browser-node, a

number of UNIX utilities implemented in TypeScript, a shell,
and web-based Terminal Ul

7. REFERENCES

[1] R. Mcllroy. Chrome 47 beta: Idle time work, splash
screens, and desktop notification management.
https://blog.chromium.org/2015/10/
chrome-47-beta-idle-time-work-splash.html.
Accessed: 2015-10-22.

[2] B. Souci and M. Lemaire. An inside look at the
architecture of nodejs. Technical report, McGill
University, 2014.

[3] J. Vilk and E. D. Berger. Doppio: breaking the browser
language barrier. In ACM SIGPLAN Notices,
volume 49, pages 508-518. ACM, 2014.

[4] J. Yasskin. Web bluetooth.
https://webbluetoothcg.github.io/web-bluetooth/.
Accessed: 2015-10-22.

https://blog.chromium.org/2015/10/chrome-47-beta-idle-time-work-splash.html
https://blog.chromium.org/2015/10/chrome-47-beta-idle-time-work-splash.html
https://webbluetoothcg.github.io/web-bluetooth/

	Introduction
	Approach
	System Design
	Kernel
	Fork and Spawn
	Task Scheduler

	browser-node
	Shell
	Utilities
	Web Terminal

	Results
	Scheduler

	Discussion
	Further work
	Terminal
	Pseudo-Filesystems
	Scheduler

	Conclusion
	References

