
BuckleScript User Manual
Hongbo	Zhang		–	Version	1.2.1+Dev	

Table of Contents
Why	BuckleScript

Benefits	of	JavaScript	platform

Problems	of	JavaScript	&&	how	BuckleScript	solves	it

Installation

Install	from	NPM	registries

Install	from	source	with	npm	package	manager

Install	with	minimal	dependencies

Introduction	to	OCaml	ecosystem:	OPAM

Get	Started

First	example

An	example	with	multiple	modules

Built	in	npm	support

Build	OCaml	library	as	a	npm	package

To	use	OCaml	library	as	a	npm	package

Together

Examples

JS	Calling	OCaml

OCaml	calling	JS

Binding	to	simple	JS	functions	values

Binding	to	global	value:	bs.val

Binding	to	JavaScript	constructor:	bs.new

Binding	to	a	value	from	a	module:	bs.module

Binding	the	whole	module	as	a	value	or	function

Binding	to	method:	bs.send,	bs.send.pipe

Binding	to	dynamic	key	access/set:	bs.set_index,	bs.get_index

Binding	to	Getter/Setter:	bs.get,	bs.set

Splice	calling	convention:	bs.splice

Special	types	on	external	declarations:	bs.string,	bs.int,	bs.ignore

Using	polymorphic	variant	to	model	enums	and	string	types

Using	polymorphic	variant	to	model	event	listener

Phantom	Arguments	and	ad-hoc	polyrmophism

https://github.com/bloomberg/bucklescript

Binding	to	NodeJS	special	variables:	bs.node

Binding	to	callbacks	(high-order	function)

Uncurried	calling	convention	as	an	optimization

Callback	optimization

Bindings	to	 this 	based	callbacks:	bs.this

Binding	to	JS	objects

Simple	object	type

Complex	object	type

How	to	consume	JS	property	and	methods

getter/setter	annotation	to	JS	properties

Create	JS	objects	using	bs.obj

Create	JS	objects	using	external

Create	JS	objects	with	 this 	semantics

Method	chaining

Object	label	translation	convention

Embedding	raw	Javascript	code

Embedding	raw	JS	code	as	an	expression

Embedding	raw	JS	code	as	statements

Debugger	support

Regex	support

Examples

A	simple	example:	binding	to	mocha	unit	test	library

Js	module

Extended	compiler	options

-bs-main	(single	directory	build)

-bs-files

-bs-package-name

-bs-packge-output

-bs-gen-tds

-bs-no-warn-ffi-type

-bs-eval

-bs-no-builtin-ppx-ml,	-bs-no-builtin-ppx-mli

Semantics	difference	from	other	backends

Custom	data	type

Physical	(in)equality

String	char	range

Weak	map

Integers

Printf.printf

Hashtbl	hash	algorithm

Marshall

Sys.argv,	Sys.max_array_length,	Sys.max_string_length

Unsupported	IO	primitives

Conditional	compilation	support	-	static	if

Concrete	syntax

Typing	rules

Examples

Built	in	variables	and	custom	variables

Changes	to	command	line	options

Build	system	support

FAQ

High	Level	compiler	workflow

Design	Principles

Soundness

Minimal	new	symbol	creation

Runtime	representation

Simple	OCaml	type

Integration	with	Reason

How	to	contribute

Build	the	compiler

Build	the	runtime

Build	the	stdlib

Help	rewrite	the	whole	runtime	in	OCaml

Comparisons

Difference	from	js_of_ocaml

Appendix	A:	CHANGES

1.2.1	+	dev

1.1.2

1.1.1

1.03

1.02

1.01

https://github.com/ocsigen/js_of_ocaml

1.0

BuckleScript	is	a	backend	for	the	OCaml	compiler	which	emits
JavaScript.	It	works	with	both	vanilla	OCaml	and	Reason,	the	whole
compiler	is	compiled	into	JS	(and	ASM)	so	that	you	can	play	it	in	the
browser.

NOTE

PDF	version	is	available.

Document	under	bloomberg.github.io	matches	with	master	branch.

They	are	also	distributed	(docs/Manual.html ,	 docs/Manual.pdf)
together	with	your	Installation	(with	the	exact	version).	If	you	find
errors	or	omissions	in	this	document,	please	don’t	hesitate	to
submit	an	issue,	sources	are	here.

Why	BuckleScript

Bene�ts	of	JavaScript	platform

JavaScript	is	not	just	the	browser	language,	it’s	also	the	only	existing	cross
platform	language.	It	is	truly	everywhere:	users	don’t	need	to	install	binaries	or
use	package	managers	to	access	software,	just	a	link	will	work.

Another	important	factor	is	that	the	JavaScript	VM	is	quite	fast	and	keeps	getting
faster.	The	JavaScript	platform	is	therefore	increasingly	capable	of	supporting
large	applications.

Problems	of	JavaScript	&&	how	BuckleScript	solves	it

BuckleScript	is	mainly	designed	to	solve	the	problems	of	large	scale	JavaScript
programming:

Type-safety

OCaml	offers	an	industrial-strength	state-of-the-art	type	system	and	provides
very	strong	type	inference	(i.e.	No	verbose	type	annotation	required	compared

https://ocaml.org/
https://github.com/facebook/Reason
http://bloomberg.github.io/bucklescript/js-demo/
http://bloomberg.github.io/bucklescript/Manual.pdf
https://github.com/bloomberg/bucklescript/Manual.html
https://github.com/bloomberg/bucklescript
https://github.com/bloomberg/bucklescript/tree/master/site/docsource

with	typescript),	which	proves	invaluable	in	managing	large	projects.	OCaml’s
type	system	is	not	just	for	tooling,	it	is	a	sound	type	system	which	means	it	is
guaranteed	that	there	will	be	no	runtime	type	errors	after	type	checking.

High	quality	dead	code	elimination

A	large	amount	of	web-development	relies	on	inclusion	of	code	dependencies
by	copying	or	referencing	CDNs	(the	very	thing	that	makes	JavaScript	highly
accessible),	but	this	also	introduces	a	lot	of	dead	code.	This	impacts
performance	adversely	when	the	JavaScript	VM	has	to	interpret	code	that	will
never	be	invoked.	BuckleScript	provides	powerful	dead-code	elimination	at	all
levels:

Function	and	module	level	elimination	is	facilitated	by	the	sophistication	of
the	type-system	of	OCaml	and	purity	analysis.

At	the	global	level	BuckleScript	generates	code	ready	for	dead-code
elimination	done	by	bundling	tools	such	as	the	Google	closure-compiler.

Offline	optimizations

JavaScript	is	a	dynamic	language,	it	takes	a	performance-hit	for	the	VM	to
optimize	code	at	runtime.	While	some	JS	engines	circumvent	the	problem	to
some	extent	by	caching,	this	is	not	available	to	all	environments,	and	lack	of	a
strong	type	system	also	limits	the	level	of	optimizations	possible.	Again,
BuckleScript,	using	features	of	the	OCaml	type-system	and	compiler
implementation	is	able	to	provide	many	optimizations	during	offline
compilation,	allowing	the	runtime	code	to	be	extremely	fast.

JS	platform	and	Native	platform

Run	your	programs	on	all	platforms,	but	run	your	system	faster	under	specific
platforms.	Javascript	is	everywhere	but	it	does	not	mean	we	have	to	run	all
apps	in	JS,	under	several	platforms,	for	example,	server	side	or	iOS/Android
native	apps,	when	programs	are	written	in	OCaml,	it	can	also	be	compiled	to
native	code	for	better	and	reliable	performance.

While	a	strong	type-system	helps	in	countering	these	problems,	at	the	same	time
we	hope	to	avoid	some	of	the	problems	faced	in	using	other	offline	transpilation

http://programmers.stackexchange.com/questions/215482/what-are-the-safety-benefits-of-a-type-system
https://en.wikipedia.org/wiki/Dead_code
https://developers.google.com/closure/compiler/
http://v8project.blogspot.com/2015/07/code-caching.html
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

systems:

Slow	compilation

OCaml	byte-code	compilation	is	known	to	be	fast	(one	or	two	orders	of
magnitude	faster	than	other	similar	languages:	Scala	or	Haskell),	BuckleScript
shares	the	same	property	and	compiles	even	faster	since	it	saves	the	link	time.
See	the	speeds	at	work	in	the	playground,	the	native	backend	is	one	order
faster	than	the	JS	backend.

Un-readable	JS	Code	and	hard	to	integrate	with	existing	JS	libraries

When	compiling	to	JavaScript,	many	systems	generate	code,	that	while
syntactically	and	semantically	correct	is	not	human-readable	and	very	difficult
to	debug	and	profile.	Our	BuckleScript	implementation	and	the	multi-pass
compilation	strategy	of	OCaml,	allows	us	to	avoid	name-mangling,	and	produce
JavaScript	code	that	is	human-readable	and	easier	to	debug	and	maintain.
More	importantly,	this	makes	integration	with	existing	JS	libraries	much	easier.

Large	JS	output	even	for	a	simple	program

In	BuckleScript,	a	Hello	world 	program	generates	20	bytes	JS	code	instead	of
50K	bytes.	This	is	due	to	that	BuckleScript	has	an	excellent	integration	with	JS
libs	that	unlike	most	JS	compilers,	all	BuckleScript’s	runtime	is	written	in	OCaml
itself	so	that	these	runtime	libraries	are	only	needed	when	user	actually	call	it.

Loss	of	code-structure

Many	systems	generate	JavaScript	code	that	is	essentially	a	big	ball	of	mud.	We
try	to	keep	the	original	structure	of	the	code	by	mapping	one	OCaml	module	to
one	JS	module.

Installation

NOTE

WINDOWS	prerequisite

BuckleScript	works	natively	on	Windows,	currently	users	have	to
install	OCaml	Cygwin	first,	make	sure	that	ocamlopt 	is	in	PATH .

http://www.scala-lang.org/
https://www.haskell.org/
http://bloomberg.github.io/bucklescript/js-demo/
https://en.wikipedia.org/wiki/Name_mangling
https://en.wikipedia.org/wiki/Big_ball_of_mud
http://protz.github.io/ocaml-installer/

After	installation,	BuckleScript	does	not	rely	on	Cygwin	anymore.

Install	from	NPM	registries
Prerequisites

Standard	C	toolchain

npm 	(should	be	installed	with	Node)

The	standard	 npm 	package	management	tool	can	be	used	to	install	BuckleScript.
If	you	don’t	already	have	 npm 	installed,	follow	the	directions	listed	here.	Once
npm 	is	installed,	run	the	following	command:

or	install	it	globally

Install	from	source	with	npm	package	manager
Prerequisites:

1.	 Standard	C	toolchain

2.	 npm 	(should	be	installed	with	Node)

Instructions:

Install	with	minimal	dependencies
Prerequisites:

1.	 Standard	C	toolchain

npm	install	bs-platform

npm	install	--save	bs-platform

npm	install	-g	bs-platform

git	clone	https://github.com/bloomberg/bucklescript
cd	bucklescript
npm	install

https://docs.npmjs.com/getting-started/installing-node

BuckleScript	has	very	few	dependencies	and	building	from	source	can	easily	be
done.

Build	OCaml	compiler

The	patched	compiler	is	installed	locally	into	your	$(pwd)/bin 	directory.	To	start
using	it	temporarily,	check	if	 ocamlc.opt 	and	 ocamlopt.opt 	exist	in
$(pwd)/bin ,	and	temporarily	add	the	location	to	your	$(PATH) 	(e.g.
PATH=$(pwd)/bin:$PATH).

Building	BuckleScript

The	following	directions	assume	you	already	have	the	correct	version	of
ocamlopt.opt 	in	your	$PATH ,	having	followed	the	process	described	in	the
previous	section.

At	the	end,	you	should	have	a	binary	called	bsc.exe 	under	 jscomp/bin
directory,	which	you	can	add	to	your	 $PATH .	You	could	also	set	an	environment
variable	pointing	to	the	stdlib,	e.g.	 BSC_LIB=/path/to/jscomp/stdlib 	for	ease	of
use.

WARNING
The	built	compiler	is	not	relocatable	out	of	box,	please	don’t
move	it	around	unless	you	know	what	you	are	doing

Introduction	to	OCaml	ecosystem:	OPAM

When	working	with	OCaml	we	also	recommend	using	opam	package	manager	to
install	OCaml	tools,	available	here.	You	will	benefit	from	the	existing	OCaml
ecosystem.

git	clone	--recursive	https://github.com/bloomberg/bucklescript
cd	bucklescript/ocaml
./configure	-prefix	`pwd`	#	put	your	preferred	directory
make	world.opt
make	install

export	BS_RELEASE_BUILD=1
make	world

https://opam.ocaml.org
https://opam.ocaml.org/doc/Install.html

Once	you	have	opam 	installed,	ask	opam 	to	switch	to	using	our	version	of	the
compiler:

Get	Started

First	example

Create	a	directory	called	 hello 	and	create	package.json 	as	below:

package.json

1.	 Version	should	be	updated	accordingly

Create	 main_entry.ml 	as	below:

main_entry.ml

Build	the	app

Now	you	should	see	a	file	called	main_entry.js 	generated	as	below:

main_entry.js

opam	update
opam	switch	4.02.3
eval	`opam	config	env`

{
				"dependencies":	{
								"bs-platform":	"1.0.1"	(1)
				},
				"scripts"	:	{
								"build"	:	"bsc.exe	-c		main_entry.ml"
				}
}

let	()	=
		print_endline	"hello	world"

npm	run	build

//	GENERATED	CODE	BY	BUCKLESCRIPT	VERSION	1.0.1	,	PLEASE	EDIT	WITH	CARE

1.	 The	compiler	analyze	this	module	is	impure	due	to	the	side	effect

TIP The	working	code	is	available	here:

An	example	with	multiple	modules

Now	we	want	to	create	two	modules,	one	file	called	fib.ml 	which	exports	 fib
function,	the	other	module	called	 main_entry.ml 	which	will	call	fib .

Create	a	directory	 fib 	and	created	a	file	 package.json

package.json

1.	 here	 -bs-main 	option	tells	the	compiler	compile	main_entry 	module	and
its	dependency	accordingly

Create	file	 fib.ml 	and	file	main_entry.ml

fib.ml

main_entry.ml

'use	strict';

console.log("hello	world");

/*		Not	a	pure	module	*/	(1)

{
				"dependencies":	{
								"bs-platform":	"1.0.1"
				},
				"scripts"	:	{
								"build"	:	"bsc.exe	-c	-bs-main	main_entry.ml"	(1)
				}
}

let		fib	n		=
		let	rec	aux	n	a	b	=
				if	n	=	0	then	a
				else
						aux	(n	-	1)	b	(a+b)
		in	aux	n	1	1

let	()	=

https://github.com/bloomberg/bucklescript-addons/tree/master/examples/hello

1.	 Js 	module	is	a	built-in	module	shipped	with	BuckleScript

Build	the	app

If	everything	goes	well,	you	should	see	the	output	as	below:

Built	in	npm	support

Build	OCaml	library	as	a	npm	package

BuckleScript	extends	the	OCaml	compiler	options	with	several	flags	to	provide
better	experience	for	NPM	users.

In	general,	you	are	expected	to	deploy	two	kinds	of	artifacts,	the	generated	JS	files
and	meta	data	which	your	OCaml	dependencies	rely	on.

Since	CommonJS	has	no	namespaces,	to	allow	JS	files	live	in	different	directories,
we	have	a	flag

		for	i	=	0	to	10	do
				Js.log	(Fib.fib	i)	(1)
		done

npm	install
npm	run	build
node	main_entry.js

1
1
2
3
5
8
13
21
34
55
89

bsc.exe	-bs-package-name	$npm_package_name	-bs-package-output	
modulesystem:path/to/your/js/dir	-c	a.ml

By	passing	this	flag,	bsc.exe 	will	store	your	 package_name 	and	relative	path	to
package.json 	in	.cmj 	files.	It	will	also	generate	JS	files	in	the	directory	you
specified.	You	can,	and	are	encouraged	to,	store	Javascript	files	in	a	hierarchical
directory.

For	the	binary	artifacts,	(Note	that	this	is	not	necessary	if	you	only	want	your
libraries	to	be	consumed	by	JS	developers,	and	it	has	benefit	since	end	users	don’t
need	these	binary	data	any	more),	the	convention	is	to	store	all	 *.cm 	data	in	a
single	directory	 package.json/lib/ocaml 	and	Javascript	files	in	a	hierachical
directory	like	 package.json/lib/js

To	use	OCaml	library	as	a	npm	package

If	you	follow	the	layout	convention	above,	using	an	OCaml	package	is	pretty
straightforward:

Together

Your	command	line	would	be	like	this:

Examples

Please	visit	https://github.com/bloomberg/bucklescript-addons	for	more	examples.

JS	Calling	OCaml
Since	BuckleScript	guarantees	that	all	OCaml	functions	are	exported	as	is,	no
extra	work	is	required	to	expose	OCaml	function	to	JavaScript.

bsc.exe	-bs-package-include	ocaml-package-name	-c	a.ml

bsc.exe	-bs-package-include	ocaml-package1	-bs-package-include	ocaml-package2		-
bs-package-name	$npm_package_name	-bs-package-output	commonjs:path/to/lib/js/	-c	
a.ml

https://github.com/bloomberg/bucklescript-addons

CAUTION

external 	exports	are	not	exported	as	JS	functions,	if	you
really	want	to	export	those	external	functions,	please	write
val 	instead

operators 	are	escaped,	since	Javascript	does	not	support
user	defined	operators.	For	example,	instead	of	calling
Pervasives.(^) ,	you	have	to	call	Pervasives.$caret 	from
your	Javascript	functions

If	users	want	to	consume	some	OCaml	features	only	available	in	OCaml	but	not	in
JS,	we	recommend	users	to	export	it	as	functions.

For	example,	data	constructors	are	not	available	in	JS

Currently,	we	recommend	user	to	expose	the	constructor	as	a	function	so	that	it
can	be	constructed	from	the	JS	side.

NOTE
In	the	future,	we	will	derive	these	functions	to	automate	such
process

OCaml	calling	JS
To	make	OCaml	work	smoothly	with	Javascript,	we	introduced	several	extensions
to	the	OCaml	language.	These	BuckleScript	extensions	facilitate	the	integration	of
native	JavaScript	code	and	improve	the	generated	code.

Like	TypeScript,	when	building	type-safe	bindings	from	JS	to	OCaml,	users	have	to
write	type	declarations.	In	OCaml,	unlike	TypeScript,	users	do	not	need	to	create	a

		type	t	=
				|	Cons	of	int	*	t
				|	Nil

let	cons	x	y	=	Cons	(x,y)
let	nil	=	Nil

separate	 .d.ts 	file,	since	the	type	declarations	is	an	integral	part	of	OCaml.

The	FFI	is	divided	into	several	components:

Binding	to	simple	functions	and	values

Binding	to	high-order	functions

Binding	to	object	literals

Binding	to	classes

Extensions	to	the	language	for	debugger,	regex	and	embedding	arbitrary	JS
code

Binding	to	simple	JS	functions	values

This	part	is	similar	to	traditional	FFI,	with	syntax	as	described	below:

Users	need	to	declare	types	for	foreign	functions	(JS	functions	for	BuckleScript	or
C	functions	for	native	compiler)	and	provide	customized	 attributes .

Binding	to	global	value:	bs.val

bs.val 	attribute	is	used	to	bind	to	a	JavaScript	value,	it	can	be	a	function	or
plain	value.

NOTE

If	 external-declaration 	is	the	same	as	value-name ,	user	can
leave	 external-declaration 	empty,	for	example:

If	you	want	to	make	a	single	FFI	for	both	C	functions	and

external	value-name	:		typexpr	=		external-declaration		attributes
external-declaration	:=		string-literal

external	imul	:	int	->	int	->	int	=	"Math.imul"	[@@bs.val]
type	dom
(*	Abstract	type	for	the	DOM	*)
external	dom	:	dom	=	"document"	[@@bs.val]

external	document	:	dom	=	""	[@@bs.val]

http://caml.inria.fr/pub/docs/manual-ocaml-4.02/intfc.html

JavaScript	functions,	you	can	give	the	JavaScript	foreign
function	a	different	name:

Binding	to	JavaScript	constructor:	bs.new

bs.new 	is	used	to	create	a	JavaScript	object.

Output:

Binding	to	a	value	from	a	module:	bs.module

Input:

1.	 "U"	will	hint	the	compiler	to	generate	a	better	name	for	the	module,	see	output

Output:

NOTE

if	 external-declaration 	is	the	same	as	value-name,	it	can	be
left	empty,	for	example,

external	imul	:	int	->	int	->	int	=
		"c_imul"	[@@bs.val	"Math.imul"]

external	create_date	:	unit	->	t	=	"Date"	[@@bs.new]
let	date	=	create_date	()

var	date	=	new	Date();

external	add	:	int	->	int	->	int	=	"add"	[@@bs.module	"x"]
external	add2	:	int	->	int	->	int	=	"add2"[@@bs.module	"y",	"U"]	(1)
let	f	=	add	3	4
let	g	=	add2	3	4

var	U	=	require("y");
var	X	=	require("x");
var	f	=	X.add(3,	4);
var	g	=	U.add2(3,	4);

Binding	the	whole	module	as	a	value	or	function

1.	 external-declaration 	is	the	module	name

NOTE

if	 external-declaration 	is	the	same	as	value-name,	it	can	be
left	empty,	for	example,

Binding	to	method:	bs.send,	bs.send.pipe

bs.send 	helps	the	user	send	a	message	to	a	JS	object

The	object	is	always	the	first	argument	and	actual	arguments	follow.

Input:

Output:

bs.pipe.send 	is	similar	to	bs.send 	except	that	the	first	argument,	i.e,	the
object,	is	put	in	the	position	of	last	argument	to	help	user	write	in	a	chaining	style:

external	add	:	int	->	int	->	int	=	""	[@@bs.module	"x"]

type	http
external	http	:	http	=	"http"	[@@bs.module]	(1)

external	http	:	http	=	""	[@@bs.module]

type	id	(**	Abstract	type	for	id	object	*)
external	get_by_id	:	dom	->	string	->	id	=
		"getElementById"	[@@bs.send]

get_by_id	dom	"xx"

dom.getElementById("xx")

1.	 For	the	 [@bs] 	attribute	in	the	callback,	see	Binding	to	callbacks	(high-order
function)

NOTE

if	 external-declaration 	is	the	same	as	value-name,	it	can	be
left	empty,	for	example,

Binding	to	dynamic	key	access/set:	bs.set_index,	bs.get_index

This	attribute	allows	dynamic	access	to	a	JavaScript	property

Binding	to	Getter/Setter:	bs.get,	bs.set

This	attribute	helps	get	and	set	the	property	of	a	JavaScript	object.

Splice	calling	convention:	bs.splice

In	JS,	it	is	quite	common	to	have	a	function	take	variadic	arguments,	BuckleScript
support	typing	homogeneous	variadic	arguments.	For	example,

external	map	:	('a	->	'b	[@bs])	->	'b	array	=
		""	[@@bs.send.pipe:	'a	array]	(1)
external	forEach:	('a	->	unit	[@bs])	->	'a	array	=
		""	[@@bs.send.pipe:	'a	array]
let	test	arr	=
				arr
				|>	map	(fun	[@bs]	x	->	x	+	1)
				|>	forEach	(fun	[@bs]	x	->	Js.log	x)

external	getElementById	:	dom	->	string	->	id	=
		""	[@@bs.send]

type	t
external	create	:	int	->	t	=	"Int32Array"	[@@bs.new]
external	get	:	t	->	int	->	int	=	""	[@@bs.get_index]
external	set	:	t	->	int	->	int	->	unit	=	""	[@@bs.set_index]

type	textarea
external	set_name	:	textarea	->	string	->	unit	=	"name"	[@@bs.set]
external	get_name	:	textarea	->	string	=	"name"	[@@bs.get]

Output

NOTE
For	the	external	call,	if	the	array 	arguments	is	not	a	compile	time
array,	the	compiler	will	emit	an	error	message

Special	types	on	external	declarations:	bs.string,	bs.int,	bs.ignore

Using	polymorphic	variant	to	model	enums	and	string	types

There	are	several	patterns	heavily	used	in	existing	JavaScript	codebase,	for
example,	string	type	is	used	a	lot.	BuckleScript	FFI	allows	to	model	string	type	in	a
safe	way	by	using	annotated	polymorphic	variant.

1.	 Here	we	intentionally	made	an	example	to	show	how	to	customize	a	name

Ouptut:

Polymoprhic	variants	can	also	be	used	to	model	enums.

external	join	:	string	array	->	string	=	""	[@@bs.module	"path"]	[@@bs.splice]
let	v	=	join	[|	"a"	"b"|]

var	Path	=	require("path")
var	v	=	Path.join("a","b")

external	readFileSync	:
		name:string	->
		([`utf8
			|	`my_name	[@bs.as	"ascii"]	(1)
]	[@bs.string])	->
		string	=	""
		[@@bs.module	"fs"]

let	_	=
		readFileSync	~name:"xx.txt"	`my_name

var	Fs	=	require("fs");
Fs.readFileSync("xx.txt",	"ascii");

external	test_int_type	:

1.	 `on_closed	will	be	encoded	as	0

2.	 `on_open	will	be	3	due	to	the	attribute	bs.as

3.	 `in_bin	will	be	4

Using	polymorphic	variant	to	model	event	listener

BuckleScript	model	this	in	a	type-safe	way	by	using	annotated	polymorphic
variants

1.	 This	is	a	very	powerful	typing:	each	event	can	have	its	different	types

Output:

		([`on_closed	(1)
			|	`on_open	[@bs.as	3]		(2)
			|	`in_bin	(3)
]
			[@bs.int])		->	int		=
		""	[@@bs.val]

type	readline
external	on	:
				(
				[`close	of	unit	->	unit
				|	`line	of	string	->	unit
]	(1)
				[@bs.string])
				->	readline	=	""	[@@bs.send.pipe:	readline]
let	register	rl	=
		rl
		|>	on	(`close	(fun	event	->	()))
		|>	on	(`line	(fun	line	->	print_endline	line))

function	register(rl)	{
		return	rl.on("close",	function	()	{
																return	/*	()	*/0;
														})
											.on("line",	function	(line)	{
														console.log(line);
														return	/*	()	*/0;
												});
}

WARNING

These	annotations	will	only	have	effect	in	external
declarations.

The	runtime	encoding	of	using	polymorphic	variant	is
internal	to	the	compiler.

With	these	annotations	mentioned	above,	BuckleScript	will
automatically	transform	the	internal	encoding	to	the
designated	encoding	for	FFI.	BuckleScript	will	try	to	do	such
conversion	at	compile	time	if	it	can,	otherwise,	it	will	do	such
conversion	in	the	runtime,	but	it	should	be	always	correct.

Phantom	Arguments	and	ad-hoc	polyrmophism

bs.ignore 	allows	arguments	to	be	erased	after	passing	to	JS	functional	call,	the
side	effect	will	still	be	recorded.

For	example,

1.	 the	first	argument	will	be	erased

Output:

This	is	very	useful	to	combine	GADT:

external	add	:	(int	[@bs.ignore])	->	int	->	int	=	""
[@@bs.val]
let	v	=	add	0	1	2	(1)

var	v	=	add	(1,2)

type	_	kind	=
		|	Float	:	float	kind
		|	String	:	string	kind
external	add	:	('a	kind	[@bs.ignore])	->	'a	->	'a	->	'a	=	""	[@@bs.val]

let	()	=
		Js.log	(add	Float	3.0	2.0);
		Js.log	(add	String	"x"	"y");

User	can	also	have	a	payload	for	the	GADT:

Binding	to	NodeJS	special	variables:	bs.node

NodeJS	has	several	file	local	variables:	dirname ,	 filename ,	 module_ ,	and
require ,	their	semantics	are	more	like	macros	instead	of	functions.

BuckleScript	provides	built-in	macro	support	for	these	variables:

Binding	to	callbacks	(high-order	function)

High	order	functions	are	functions	where	the	callback	can	be	another	function.
For	example,	suppose	JS	has	a	map	function	as	below:

A	naive	external	type	declaration	would	be	as	below:

let	string_of_kind	(type	t)	(kind	:	t	kind)	=
		match	kind	with
		|	Float	->	"float"
		|	String	->	"string"

external	add_dyn	:	('a	kind	[@bs.ignore])	->	string	->		'a	->	'a	->	'a	=	""
[@@bs.val]

let	add2	k	x	y	=
		add_dyn	k	(string_of_kind	k)	x	y

let	dirname	:	string	Js.undefined	=	[%bs.node	__dirname]
let	filename	:	string	Js.undefined	=	[%bs.node	__filename]
let	module_	:	Node.node_module	Js.undefined	=	[%bs.node	module_]
let	require	:	Node.node_require	Js.undefined	=	[%bs.node	require]

function	map	(a,	b,	f){
		var	i	=	Math.min(a.length,	b.length);
		var	c	=	new	Array(i);
		for(var	j	=	0;	j	<	i;	++j){
				c[j]	=	f(a[i],b[i])
		}
		return	c	;
}

external	map	:	'a	array	->	'b	array	->	('a	->	'b	->	'c)	->	'c	array	=	""	

Unfortunately,	this	is	not	completely	correct.	The	issue	is	by	reading	the	type	'a	→
'b	→	'c ,	it	can	be	in	several	cases:

In	OCaml,	they	all	have	the	same	type;	however,	f 	and	 g 	may	be	compiled	into
functions	with	different	arities.

A	naive	compilation	will	compile	f 	as	below:

Its	arity	will	be	consistent	but	is	1	(returning	another	function);	however,	we
expect	its	arity	to	be	2.

Bucklescript	uses	a	more	complex	compilation	strategy,	compiling	f 	as

No	matter	which	strategy	we	use,	existing	typing	rules	cannot	guarantee	a

[@@bs.val]

let	f	x	y	=	x	+	y

let	g	x		=	let	z		=	x	+	1	in	fun	y	->	x	+	z

let	f	=	fun	x	->	fun	y	->	x	+	y

function	f(x){
		return	function	(y){
				return	x	+	y;
		}
}
function	g(x){
		var	z	=	x	+	1	;
		return	function	(y){
				return	x	+	z	;
		}
}

function	f(x,y){
		return	x	+	y	;
}

function	of	type	 'a	→	'b	→	'c 	will	have	arity	2.

To	solve	this	problem	introduced	by	OCaml’s	curried	calling	convention,	we
support	a	special	attribute	 [@bs] 	at	the	type	level.

Here	 ('a	→	'b	→	'c	[@bs]) 	will	always	be	of	arity	2,	in	general,	'a0	→	'a1	…'aN
→	'b0	[@bs] 	is	the	same	as	'a0	→	'a1	…'aN	→	'b0 	except	the	former’s	arity	is
guaranteed	to	be	 N 	while	the	latter	is	unknown.

To	produce	a	function	of	type	'a0	→	..	'aN	→	'b0	[@bs] ,	as	follows:

A	special	case	for	arity	of	0:

Note	that	this	extension	to	the	OCaml	language	is	sound.	If	you	add	an	attribute	in
one	place	but	miss	it	in	other	place,	the	type	checker	will	complain.

Another	more	complex	example:

1.	 u0 	has	arity	of	2,	return	a	function	with	arity	1

2.	 u1 	has	arity	of	3

3.	 u2 	has	arity	of	2,	reutrn	a	function	with	arity	1

external	map	:	'a	array	->	'b	array	->	('a	->	'b	->	'c	[@bs])	->	'c	array
=	"map"	[@@bs.val]

let	f	:	'a0	->	'a1	->	..	'b0	[@bs]	=
		fun	[@bs]	a0	a1	..	aN	->	b0
let	b	:	'b0	=	f	a0	a1	a2	..	aN	[@bs]

let	f	:	unit	->	'b0	[@bs]	=	fun	[@bs]	()	->	b0
let	b	:	'b0	=	f	()	[@bs]

type	'a	return	=	int	->	'a	[@bs]
type	'a	u0	=	int	->	string	->	'a	return		[@bs]	(1)
type	'a	u1	=	int	->	string	->	int	->	'a	[@bs]	(2)
type	'a	u2	=	int	->	string	->	(int	->	'a	[@bs])	[@bs]	(3)

Uncurried	calling	convention	as	an	optimization

Background:

As	we	discussed	before,	we	can	compile	any	OCaml	function	as	arity	1	to	support
OCaml’s	curried	calling	convention.

This	model	is	simple	and	easy	to	implement,	but	the	native	compilation	is	very
slow	and	expensive	for	all	functions.

can	be	compiled	as

But	as	you	can	see,	this	is	highly	inefficient,	since	the	compiler	already	saw	the
source	definition	of	 f ,	it	can	be	optimized	as	below:

BuckleScript	does	this	optimization	in	the	cross	module	level	and	tries	to	infer	the
arity	as	much	as	it	can.

Callback	optimization

However,	such	optimization	will	not	work	with	high-order	functions,	i.e,
callbacks.

For	example,

let	f	x	y	z	=	x	+	y	+	z
let	a	=	f	1	2	3
let	b	=	f	1	2

function	f(x){
		return	function	(y){
				return	function	(z){
						return	x	+	y	+	z
				}
		}
}
var	a	=	f	(1)	(2)	(3)
var	b	=	f	(1)	(2)

function	f(x,y,z)	{return	x	+	y	+	z}
var	a	=	f(1,2,3)
var	b	=	function(z){return	f(1,2,z)}

Since	the	arity	of	f 	is	unknown,	the	compiler	can	not	do	any	optimization	(unless
app 	gets	inlined),	so	we	have	to	generate	code	as	below:

Curry._1 	is	a	function	to	dynamically	support	the	curried	calling	convention.

Since	we	support	the	uncurried	calling	convention,	you	can	write	app 	as	below

Now	the	type	system	will	infer	app 	as	type	('a	→'b	[@bs])	→	'a 	and	compile
app 	as

NOTE

In	OCaml	the	compiler	internally	uncurries	every	function
declared	as	 external 	and	guarantees	that	it	is	always	fully
applied.	Therefore,	for	 external 	first-order	FFI,	its	outermost
function	does	not	need	the	 [@bs] 	annotation.

Bindings	to	 this 	based	callbacks:	bs.this

Many	JS	libraries	have	callbacks	which	rely	on	this 	(the	source),	for	example:

Here,	 this 	would	be	the	same	as	x 	(actually	depends	on	how	onload 	is	called).

let	app	f	x	=	f	x

function	app(f,x){
		return	Curry._1(f,x);
}

let	app	f	x	=	f	x	[@bs]

function	app(f,x){
		return	f(x)
}

x.onload	=	function(v){
		console.log(this.response	+	v)
}

It	is	clear	that	it	is	not	correct	to	declare	 x.onload 	of	type	unit	→	unit	[@bs] .
Instead,	we	introduced	a	special	attribute	 bs.this 	allowing	us	to	type	x 	as
below:

Output:

1.	 The	first	argument	is	automatically	bound	to	this

bs.this 	is	the	same	as	bs 	:	except	that	its	first	parameter	is	reserved	for	this
and	for	arity	of	0,	there	is	no	need	for	a	redundant	 unit 	type:

NOTE

There	is	no	way	to	consume	a	function	of	type	'obj	→	'a0	..	→
'aN	→	'b0	[@bs.this] 	on	the	OCaml	side.	This	is	an	intentional
design	choice,	we	don’t	encourage	people	to	write	code	in	this
style.

This	was	introduced	mainly	to	be	consumed	by	existing	JS
libraries.	User	can	also	type	 x 	as	a	JS	class	too	(see	later)

Binding	to	JS	objects

type	x
external	set_onload	:	x	->	(x	->	int	->	unit	[@bs.this])	->	unit	=	"onload"	
[@@bs.set]
external	resp	:	x	->	int	=	"response"	[@@bs.get]
set_onload	x	begin	fun	[@bs.this]	o	v	->
		Js.log(resp	o	+	v)
end

x.onload	=	function(v){
		var	o	=	this	;	(1)
		console.log(o.response	+	v);
}

let	f	:	'obj	->	'b'	[@bs.this]	=
		fun	[@bs.this]	obj	->
let	f1	:	'obj	->	'a0	->	'b	[@bs.this]	=
		fun	[@bs.this]	obj	a	->	...

Convention:

All	JS	objects	of	type	'a 	are	lifted	to	type	'a	Js.t 	to	avoid	conflict	with	OCaml’s
native	object	system	(we	support	both	OCaml’s	native	object	system	and	FFI	to	JS’s
objects),	 ## 	is	used	in	JS’s	object	method	dispatch	and	field	access,	while	# 	is
used	in	OCaml’s	object	method	dispatch.

Typing	JavaScript	objects:

OCaml	supports	object	oriented	style	natively	and	provides	structural	type
system.	OCaml’s	object	system	has	different	runtime	semantics	from	JS	object,	but
they	share	the	same	type	system,	all	JS	objects	of	type	 'a 	is	typed	as	'a	Js.t

OCaml	provide	two	kinds	of	syntaxes	to	mode	structural	typing:	<	p1	:	t1	>
style	and	 class	type 	style,	they	are	mostly	the	same	except	that	the	latter	is
more	feature	rich	(support	inheritance)	but	more	verbose.

Simple	object	type

Suppose	we	have	a	JS	file	demo.js 	which	exports	two	properties:	height 	and
width :

demo.js

There	are	different	ways	to	writing	binding	to	module	demo ,	here	we	use	OCaml
objects	to	model	module	 demo

There	are	too	kinds	of	types	on	the	method	name:

normal	type

exports.height	=	3
exports.width		=	3

external	demo	:	<	height	:	int	;	width	:	int	>	Js.t	=	""	[@@bs.module]

<	label	:	int	>
<	label	:	int	->	int	>
<	label	:	int	->	int	[@bs]>
<	label	:	int	->	int	[@bs.this]>

method

The	difference	is	that	for	method ,	the	type	system	will	force	users	to	full-fil	its
arguments	all	at	the	same	time,	since	its	semantics	depends	on	 this 	in
JavaScript.

For	example:

1.	 ## 	is	JS	object	property/method	dispatch

The	compiler	would	infer	types	differently

1.	 .. 	is	a	row	variable,	which	means	the	object	can	contain	more	methods

Complex	object	type

Below	is	an	example:

1.	 class	type 	annotated	with	[@bs] 	is	treated	as	a	JS	class	type,	it	needs	to	be
lifted	to	 Js.t 	too

<	label	:	int	->	int	[@bs.meth]	>

let	test	f	=
		f##hi	1	(1)
let	test2	f			=
		let	u	=	f##hi	in
		u	1
let	test3	f	=
		let	u	=	f##hi	in
		u	1	[@bs]

val	test	:	<	hi	:	int	->	'a	[@bs.meth];	..	>	->	'a	(1)
val	test2	:	<	hi	:	int	->	'a	;	..	>	->	'a
val	test3	:	<	hi	:	int	->	'a	[@bs];	..	>

class	type	_rect	=	object
		method	height	:	int
		method	width	:	int
		method	draw	:	unit	->	unit
end	[@bs]	(1)
type	rect	=	_rect	Js.t

For	JS	classes,	methods	with	arrow	types	are	treated	as	real	methods
(automatically	annotated	with	 [@bs.meth])	while	methods	with	non-arrow	types
are	treated	as	properties.

So	the	type	rect 	is	the	same	as	below:

How	to	consume	JS	property	and	methods

As	we	said:	 ## 	is	used	in	both	object	method	dispatch	and	field	access.

1.	 property	get	should	not	come	with	any	argument	as	we	discussed	above,
which	will	be	checked	by	the	compiler

2.	 Here	 method 	is	of	arity	3

NOTE

All	JS	method	application	is	uncurried,	JS’s	method	is	not	a
function,	this	invariant	can	be	guaranteed	by	OCaml’s	type
checker,	a	classic	example	shown	below:

1.	 May	cause	exception,	implementation	dependent,
console.log 	may	depend	on	this

In	BuckleScript

type	rect	=	<	height	:	int	;	wdith	:	int	;	draw	:	unit	->	unit	[@bs.meth]	>	Js.t

f##property	(1)
f##property#=	v
f##js_method	args0	args1	args2	(2)

console.log('fine')
var	log	=	console.log;
log('fine')	(1)

let	fn	=	f0##f	in
let	a	=	fn	1	2
(*	f##field	a	b	would	think	`field`	as	a	method	*)

is	different	from

The	compiler	will	infer	as	below:

If	we	type	 console 	properly	in	OCaml,	user	could	only	write

1.	 OCaml	compiler	will	complain

NOTE

If	a	user	were	to	make	such	a	mistake,	the	type	checker	would
complain	by	saying	it	expected	 Js.method 	but	saw	a	function
instead,	so	it	is	still	sound	and	type	safe.

getter/setter	annotation	to	JS	properties

Since	OCaml’s	object	system	does	not	have	getters/setters,	we	introduced	two
attributes	 bs.get 	and	 bs.set 	to	help	inform	BuckleScript	to	compile	them	as
property	getters/setters.

let	b	=	f1##f	1	2

val	f0	:	<	f	:	int	->	int	->	int		>	Js.t
val	f1	:	<	f	:	int	->	int	->	int	[@bs.meth]	>	Js.t

console##log	"fine"
let	u	=	console##log
let	()	=	u	"fine"	(1)

type	y		=	<
	height	:	int	[@@bs.set	{no_get}]	(1)
>	Js.t
type	y0	=	<
	height	:	int	[@@bs.set]	[@@bs.get	{null}]	(2)
>	Js.t
type	y1	=	<
		height	:	int	[@@bs.set]	[@@bs.get	{undefined}]	(3)
>	Js.t
type	y2	=	<
		height	:	int	[@@bs.set]	[@@bs.get	{undefined;	null}]	(4)
>	Js.t
type	y3	=	<
		height	:	int		[@@bs.get	{undefined	;	null}]	(5)

1.	 height 	is	setter	only

2.	 getter	return	 int	Js.null

3.	 getter	return	 int	Js.undefined

4.	 getter	return	 int	Js.null_undefined

5.	 getter	only,	return	int	Js.null_undefined

NOTE Getter/Setter	also	applies	to	class	type	label

Create	JS	objects	using	bs.obj

Not	only	can	we	create	bindings	to	JS	objects,	but	also	we	can	create	JS	objects	in
a	type	safe	way	in	OCaml	side:

1.	 bs.obj 	extension	is	used	to	mark	{} 	as	JS	objects

Output:

The	compiler	would	infer	u 	as	type

To	make	it	more	symmetric,	extension	 bs.obj 	can	also	be	applied	into	the	type
level,	so	you	can	write

Users	can	also	write	expression	and	types	together	as	below:

>	Js.t

let	u	=	[%bs.obj	{	x	=	{	y	=	{	z	=	3}}}]	(1)

var	u	=	{	x	:	{	y	:	{	z	:	3	}}}}

val	u	:	<	x	:		<	y	:	<	z	:	int	>	Js.t	>		Js.t	>	Js.t

val	u	:	[%bs.obj:	<	x	:	<	y	<	z	:	int	>	>	>]

Objects	in	a	collection	also	works:

Output:

Create	JS	objects	using	external

bs.obj 	can	also	be	used	as	an	attribute	in	external	declarations,	as	below:

Output:

Option	argument	is	also	supported:

1.	 In	OCaml,	the	order	of	label	does	not	matter,	and	the	evaluation	order	of
arguments	is	undefined.	Since	the	order	does	not	matter,	to	make	sure	the
compiler	realize	all	the	arguments	are	full-filled	(including	optional
arguments),	it	is	common	to	have	a	 unit 	type	before	the	result

Output:

let	u	=	[%bs.obj	({	x	=	{	y	=	{	z	=	3	}}}	:	<	x	:	<	y	:	<	z	:	int	>	>	>]

let	xs	=	[%bs.obj	[|	{	x	=	3	}	;	{x	=	3	}	|]	:	<	x	:	int		>	array]
let	ys	=	[%bs.obj	[|	{	x	=	3}	:	{	x	=	4	}	|]]

var	xs	=	[{	x	:	3	}	,	{	x	:	3	}]
var	ys	=	[{	x	:	3	},		{x	:	4	}]

external	make_config	:	hi:int	->	lo:int	->	unit	->	t	=	""	[@@bs.obj]
let	v	=	make_config	~hi:2	~lo:3

var	v	=	{	hi:2,	lo:3}

external	make_config	:	hi:int	->	?lo:int	->	unit	->	t	=	""	[@@bs.obj]	(1)
let	u	=	make_config	~hi:3	()
let	v	=	make_config	~lo:2	~hi:3		()

var	u	=	{hi	:	3}

Now,	we	can	write	JS	style	code	in	OCaml	too	(in	a	type	safe	way):

1.	 fn 	property	is	not	method,	it	does	not	rely	on	this ,	we	will	show	how	to
create	JS	method	in	OCaml	later.

Output:

NOTE

When	the	field	is	an	uncurried	function,	a	short-hand	syntax	#@ 	is
available:

The	compiler	will	infer	the	type	of	b 	as

Create	JS	objects	with	 this 	semantics

var	v	=	{hi	:	3	,	lo:	2}

let	u	=	[%bs.obj	{
		x	=	{	y	=	{	z	=	3	}	};
		fn	=	fun	[@bs]	u	v	->	u	+	v	(1)
		}]
let	h	=	u##x##y##z
let	a	=	h##fn
let	b	=	a	1	2	[@bs]

var	u	=	{	x	:	{	y	:	{z	:	3}},	fn	:	function	(u,v)	{return	u	+	v}}
var	h	=	u.x.y.z
var	a	=	h.fn
var	b	=	a(1,2)

let	b	x	y	h	=	h#@fn	x	y

function	b	(x,y,h){
		return	h.fn(x,y)
}

val	b	:	'a	->	'b	->		<	fn	:		'a	->	'b	->	'c	[@bs]	>	Js.t	->	'c

The	objects	created	above	can	not	use	this 	in	the	method,	this	is	supported	in
BuckleScript	too.

1.	 self 	is	bound	to	this 	in	generated	JS	code

2.	 [@bs] 	marks	 object	..	end 	as	a	JS	object

Output:

Compiler	infer	the	type	of	 v2 	as	below:

Below	is	another	example	to	consume	JS	object	:

let	v2		=
		let	x	=	3.	in
		object	(self)	(1)
				method	hi	x		y	=	self##say	x	+.	y
				method	say	x	=		x	*.	self##	x	()
				method	x	()	=	x
		end	[@bs]	(2)

var	v2	=	{
		hi:	function	(x,	y)	{
				var	self	=	this	;
				return	self.say(x)	+	y;
		},
		say:	function	(x)	{
				var	self	=	this	;
				return	x	*	self.x();
		},
		x:	function	()	{
				return	3;
		}
};

val	v2	:	object
		method	hi	:	float	->	float	->	float
		method	say	:	float	->	float
		method	x	:	unit	->	float
end	[@bs]

let	f	(u	:	rect)	=
		(*	the	type	annotation	is	un-necessary,
					but	it	gives	better	error	message

Output:

Method	chaining

Object	label	translation	convention

In	JS,	it	is	quite	common	to	have	several	types	for	a	single	method,	to	model	this
ad-hoc	polymorphism,	we	introduced	a	small	convention	when	translating	object
labels,	this	is	useful	as	below

Ad-hoc	polymorphism

OUTPUT:

Rules

1.	 If	 _ 	apperas	in	the	first	char,

		*)
			Js.log	u##height	;
			Js.log	u##width	;
			u##width	#=	30;
			u##height	#=	30;
			u##draw	()

function	f(u){
		console.log(u.height);
		console.log(u.width);
		u.width	=	30;
		u.height	=	30;
		return	u.draw()
}

f
##(meth0	())
##(meth1	a)
##(meth2	a	b)

f##draw_cat	(x,y)
f##draw_dog	(x,y)

f.draw(x,y)	//	f.draw	in	JS	can	accept	different	types
f.draw(x,y)

NOTE

The	first	char	_ 	will	be	discarded

If	there	is	 _ 	in	the	rest	chars,	chars	after	last	_ 	will	be
discarded

2.	 Else	if	there	is	 _ 	in	the	rest	chars,	chars	after	last	_ 	will	be
discarded

Embedding	raw	Javascript	code

WARNING

This	is	not	encouraged.	The	user	should	minimize	and	localize
use	cases	of	embedding	raw	Javascript	code,	however,
sometimes	it’s	necessary	to	get	the	job	done.

Embedding	raw	JS	code	as	an	expression

We	highly	recommend	writing	type	annotations	for	such	unsafe	code.	It	is	unsafe
to	refer	to	external	OCaml	symbols	in	raw	JS	code.

Embedding	raw	JS	code	as	statements

Other	examples:

It	will	be	compiled	into:

Polyfill	of	 Math.imul

let	keys	:	t	->	string	array	[@bs]	=	[%bs.raw	"Object.keys"]
let	unsafe_lt	:	'a	->	'a	->	Js.boolean	[@bs]	=	[%bs.raw{|function(x,y){return	x	<	
y}|}]

[%%bs.raw{|
		console.log	("hey");
|}]

let	x		:	string	=	[%bs.raw{|"\x01\x02"|}]

var	x	=	"\x01\x02"

WARNING

So	far	we	don’t	perform	any	sanity	checks	in	the	quoted	text
(syntax	checking	is	a	long-term	goal).

Users	should	not	refer	to	symbols	in	OCaml	code.	It	is	not
guaranteed	that	the	order	is	correct.

Debugger	support

We	introduced	the	extension	bs.debugger ,	for	example:

which	will	be	compiled	into:

Regex	support

We	introduced	 bs.re 	for	Javascript	regex	expression:

The	compiler	will	infer	f 	has	type	Js.Re.t 	and	generate	code	as	below

			[%%bs.raw{|
			//	Math.imul	polyfill
			if	(!Math.imul){
							Math.imul	=	function	(..)	{..}
				}
			|}]

		let	f	x	y	=
				[%bs.debugger];
				x	+	y

		function	f	(x,y)	{
					debugger;	//	JavaScript	developer	tools	will	set	an	breakpoint	and	stop	here
					x	+	y;
		}

let	f		=	[%bs.re	"/b/g"]

var	f	=	/b/g

NOTE
Js.Re.t 	is	an	abstract	type,	we	are	working	on	providing
bindings	for	it.

Examples

Below	is	a	simple	example	for	mocha	library.	For	more	examples,	please	visit
https://github.com/bloomberg/bucklescript-addons

A	simple	example:	binding	to	mocha	unit	test	library

This	is	an	example	showing	how	to	provide	bindings	to	the	mochajs	unit	test
framework.

Since,	 mochajs 	is	a	test	framework,	we	also	need	some	assertion	tests.	We	can
also	describe	the	bindings	to	 assert.deepEqual 	from	nodejs	 assert 	library:

On	top	of	this	we	can	write	normal	OCaml	functions,	for	example:

The	compiler	would	generate	code	as	below:

external	describe	:	string	->	(unit	->	unit	[@bs])	->	unit	=	""	[@@bs.val]
external	it	:	string	->	(unit	->	unit	[@bs])	->	unit	=	""	[@@bs.val]

external	eq	:	'a	->	'a	->	unit	=	"deepEqual"		[@@bs.module	"assert"]

let	assert_equal	=	eq
let	from_suites	name	suite		=
				describe	name	(fun	[@bs]	()	->
									List.iter	(fun	(name,	code)	->	it	name	code)	suite
)

	var	Assert	=	require("assert");
	var	List	=	require("bs-platform/lib/js/list");

function	assert_equal(prim,	prim$1)	{
	return	Assert.deepEqual(prim,	prim$1);
	}

function	from_suites(name,	suite)	{
	return	describe(name,	function	()	{
			return	List.iter(function	(param)	{

https://mochajs.org/
https://github.com/bloomberg/bucklescript-addons
https://mochajs.org/

Js	module
Js	module	is	shipped	with	BuckleScript,	both	the	namespace	Js 	and	 Node 	are
preserved.

Js	Public	types

Js	Nested	modules

Note	that	 Null ,	 Undefined 	and	 Null_undefined 	have	similar	interfaces,	for
example:

Js.Null	module

				return	it(param[0],	param[1]);
						},	suite);
		});
	}

type	+'a	t
(**	Js	object	type	*)
type	+	'a	null
(**	nullable,	value	of	this	type	can	be	either	[null]	or	['a]
				this	type	is	the	same	as	{!Js.Null.t}		*)
type	+	'a	undefined
(**	value	of	this	type	can	be	either	[undefined]	or	['a]
				this	type	is	the	same	as	{!Js.Undefined.t}		*)
type	+	'a	null_undefined
(**	value	of	this	type	can	be	[undefined],	[null]	or	['a]
				this	type	is	the	same	as	{!Js.Null_undefined.t}*)
type	boolean

(**	{3	nested	modules}*)
module	Null	=	Js_null
module	Undefined	=	Js_undefined
module	Null_undefined	=	Js_null_undefined

type	+	'a	t	=	'a	Js.null
external	to_opt	:	'a	t	->	'a	option	=	"js_from_nullable"
external	return	:	'a	->	'a	t		=	"%identity"
external	test	:	'a	t	->	bool	=	"js_is_nil"
external	empty	:	'a	t	=	"null"	[@@bs.val]

Js	Utility	functions

Js	Predefined	JS	values

Extended	compiler	options
BuckleScript	inherits	the	command	line	arguments	of	the	OCaml	compiler.	It	also
adds	several	flags:

-bs-main	(single	directory	build)

bsc.exe 	will	build	module	Main 	and	all	its	dependencies,	when	it	finishes,	it	will
run	 node	main.js .

external	to_bool	:	boolean	->	bool	=	"js_boolean_to_bool"
(**	convert	Js	boolean	to	OCaml	bool	*)
external	typeof	:	'a	->	string	=	"js_typeof"
(**	[typeof	x]	will	be	compiled	as	[typeof	x]	in	JS	*)
external	log	:	'a	->	unit	=	"js_dump"
(**	A	convenience	function	to	log	*)

(**	{4	operators	}*)
external	unsafe_lt	:	'a	->	'a	->	boolean	=	"js_unsafe_lt"
(**		[unsafe_lt	a	b]	will	be	compiled	as	[a	<	b]	*)
external	unsafe_le	:	'a	->	'a	->	boolean	=	"js_unsafe_le"
(**		[unsafe_le	a	b]	will	be	compiled	as	[a	<=	b]	*)
external	unsafe_gt	:	'a	->	'a	->	boolean	=	"js_unsafe_gt"
(**		[unsafe_gt	a	b]	will	be	compiled	as	[a	>	b]	*)
external	unsafe_ge	:	'a	->	'a	->	boolean	=	"js_unsafe_ge"
(**		[unsafe_ge	a	b]	will	be	compiled	as	[a	>=	b]	*)

external	true_	:	boolean	=	"true"	[@@bs.val]
external	false_	:	boolean	=	"false"	[@@bs.val]
external	null	:	'a	null	=	""
[@@bs.val]	(*	The	same	as	{!Js.Null.empty}	will	be	compiled	as	[null]*)
external	undefined	:	'a	undefined	=	""
[@@bs.val]	(*	The	same	as		{!Js.Undefined.empty}	will	be	compiled	as	[undefined]*)

bsc.exe	-bs-main	main.ml

bsc.exe	-c	-bs-main	main.ml

http://caml.inria.fr/pub/docs/manual-ocaml/comp.html

The	same	as	above,	but	will	not	run	node .

-bs-�les

So	that	you	can	do

The	compiler	will	sort	the	order	of	input	files	before	starting	compilation.

BuckleScript	supports	two	compilation	mode,	script	mode	and	package	mode,	in
package	mode,	you	have	to	provide	 package.json 	on	top	and	set	the	options	-
bs-package-name ,	 -bs-package-output .	In	script	mode,	such	flags	are	not
needed

-bs-package-name

The	project	name	of	your	project,	user	is	suggested	to	make	it	consistent	with	the
name 	field	in	package.json

-bs-packge-output

The	format	is	module_system:oupt/path/relative/to/package.json 	Currently
supported	module	systesms	are:	 commonjs ,	 amdjs 	and	 goog:<namespace>

For	example,	when	you	want	to	use	the	goog 	module	system,	you	can	do	things
like	this:

NOTE User	can	supply	multiple	 -bs-package-output 	at	the	same	time.

For	example:

bsc.exe	-c	-bs-files	*.ml	*.mli

bsc.exe	-bs-package-name	your_package	-bs-package-output	goog:lib/goog	-c	xx.ml

bsc.exe	-bs-package-name	name	-bs-package-output	commonjs:lib/js	-bs-package-
output	goog:lib/goog	-bs-package-output	amdjs:lib/amdjs	-c	x.ml

It	will	generate	 x.js 	in	lib/js 	as	commonjs	module,	lib/goog 	as	google
module	and	 lib/amdjs 	as	amdjs	module	at	the	same	time.

You	would	then	need	a	bundler	for	the	different	module	systems:	webpack
supports	 commonjs 	and	 amdjs 	while	 google	closure	compiler 	supports	all.

-bs-gen-tds

Trigger	the	generation	of	TypeScript	.d.ts 	files.	 bsc.exe 	has	the	ability	to	also
emits	 .d.ts 	for	better	interaction	with	typescript.	This	is	still	experimental.

For	more	options,	please	see	the	documentation	of	bsc.exe	-help .

-bs-no-warn-8-type

Turn	off	warnings	on	FFI	type	declarations

-bs-eval
Example

bsc.exe	-dparsetree	-drawlambda	-bs-eval	'Js.log	"hello"'

[(1)
		structure_item	(//toplevel//[1,0+0]..[1,0+14])
				Pstr_eval
				expression	(//toplevel//[1,0+0]..[1,0+14])
						Pexp_apply
						expression	(//toplevel//[1,0+0]..[1,0+6])
								Pexp_ident	"Js.log"	(//toplevel//[1,0+0]..[1,0+6])
						[
								<label>	""
										expression	(//toplevel//[1,0+7]..[1,0+14])
												Pexp_constant	Const_string("hello",None)
]
]
(2)
(setglobal	Bs_internal_eval!	(seq	(js_dump	"hello")	(makeblock	0)))
//	Generated	by	BUCKLESCRIPT	VERSION	1.0.2	,	PLEASE	EDIT	WITH	CARE
'use	strict';

console.log("hello");

/*		Not	a	pure	module	*/

1.	 Output	by	flag	-dparsetree

2.	 Output	by	flag	-drawlambda

For	this	flag,	it	will	not	create	any	intermediate	file,	which	is	useful	for	learning
or	troubleshooting.

-bs-no-builtin-ppx-ml,	-bs-no-builtin-ppx-mli

If	users	don’t	use	any	bs	specific	annotaions,	user	can	explicitly	turn	it	off.
Another	use	case	is	that	users	can	use	 -ppx 	explicitly	as	below:

Semantics	di9erence	from	other	backends
This	is	particularly	important	when	porting	an	existing	OCaml	application	to
JavaScript.

Custom	data	type

In	OCaml,	the	C	FFI	allows	the	user	to	define	a	custom	data	type	and	customize
caml_compare ,	 caml_hash 	behavior,	etc.	This	is	not	available	in	our	backend
(since	we	have	no	C	FFI).

Physical	(in)equality

In	general,	Users	should	only	use	physical	equality	as	an	optimization	technique,
but	not	rely	on	its	correctness,	since	it	is	tightly	coupled	with	the	runtime.

String	char	range

Currently,	BuckleScript	assumes	that	the	char	range	is	0-255 .	The	user	should	be
careful	when	they	pass	a	JavaScript	string	to	OCaml	side.	Note	that	we	are
working	on	a	solution	for	this	problem.

Weak	map

bsc.exe	-c	-ppx	bsppx.exe	-bs-no-builtin-ppx-ml	c.ml

OCaml’s	weak	map	is	not	available	in	BuckleScript.	The	weak	pointer	is	replaced
by	a	strict	pointer.

Integers

OCaml	has	 int ,	 int32 ,	 nativeint 	and	 int64 	types.	-	Both	int32 	and	 int64 	in
BuckleScript	have	the	exact	same	semantics	as	OCaml.	-	 int 	in	BuckleScript	is
the	same	as	 int32 	while	in	OCaml	it’s	platform	dependent.	-	nativeint 	is
treated	as	JavaScript	float,	except	for	division.	For	example,	 Nativeint.div	a	b
will	be	translated	into	 a	/b	|	0 .

WARNING

Nativeint.shift_right_logical	x	0 	is	different	from
Int32.shift_right_local	x	0 .	The	former	is	literally
translated	into	 x	>>>	0 	(translated	into	an	unsigned	int),	while
the	latter	is	 x	|	0 .

Printf.printf

The	 Printf.print 	implementation	in	BuckleScript	requires	a	newline	(\n)	to
trigger	the	printing.	This	behavior	is	not	consistent	with	the	buffered	behavior	of
native	OCaml.	The	only	potential	problem	we	foresee	is	that	if	the	program
terminates	with	no	newline	character,	the	text	will	never	be	printed.	#	Obj
module

We	do	our	best	to	mimic	the	native	compiler,	but	we	have	no	guarantee	and	there
are	differences.

Hashtbl	hash	algorithm

BuckleScript	uses	the	same	algorithm	as	native	OCaml	but	the	output	is	different
due	to	runtime	representation	of	int/int64/int32	and	float.

Marshall

Marshall	module	is	not	supported	yet.

Sys.argv,	Sys.max_array_length,	Sys.max_string_length

Command	line	arguments	are	always	empty,	might	be	fixed	in	the	near	future.

Sys.max_array_length 	and	 Sys.max_string_length 	will	be	the	same	as
max_int ,	but	it	might	be	respected.

Unsupported	IO	primitives

Because	of	the	JavaScript	environment	limitation,	Pervasives.stdin 	is	not
supported	but	both	 Pervasives.stdout 	and	 Pervasives.stderr 	are.

Conditional	compilation	support	-	static	if
It	is	quite	common	that	people	want	to	write	code	works	with	different	versions
of	compilers	and	libraries.

People	used	to	use	preprocessors	like	C	preprocessor	for	C	family	languages.	In
OCaml	community	there	are	several	preprocessors:	cppo,	ocp-pp,	camlp4	IFDEF
macros,	optcomp	and	ppx	optcomp.

Instead	of	using	a	preprocessor,	BuckleScript	adds	language	level	static	if
compilation	to	the	language.	It	is	less	powerful	than	other	preprocessors	since	it
only	support	static	if,	no	 #define ,	 #undefine ,	 #include ,	but	there	are	several
advantages.

It’s	very	small	(only	around	500	LOC)	and	highly	efficient.	There	is	no	added
pass,	everything	is	done	in	a	single	pass.	It	is	easy	to	rebuild	the	pre-processor
in	a	stand	alone	file,	with	no	dependencies	on	compiler	libs	to	back-port	it	to
old	OCaml	compilers

It’s	purely	functional	and	type	safe,	easy	to	work	with	IDEs	like	merlin

Concrete	syntax

static-if
|	HASH-IF-BOL	conditional-expression	THEN	(1)
			tokens
(HASH-ELIF-BOL	conditional-expression	THEN)	*
(ELSE-BOL	tokens)?
HASH-END-BOL

conditional-expression

http://tigcc.ticalc.org/doc/cpp.html
https://github.com/mjambon/cppo
https://github.com/OCamlPro/typerex-build/tree/master/tools/ocp-pp
https://github.com/diml/optcomp
https://github.com/janestreet/ppx_optcomp

1.	 IF-BOL	means	 #IF 	should	be	in	the	beginning	of	a	line

Typing	rules

type	of	INT	is	int

type	of	STRING	is	string

type	of	FLOAT	is	float

value	of	UIDENT	comes	from	either	built-in	values	(with	documented	types)	or
environment	variable,	if	it	is	literally	 true ,	 false 	then	it	is	bool ,	else	if	it	is
parsable	by	 int_of_string 	then	it	is	of	type	int,	else	if	it	is	parsable	by
float_of_string 	then	it	is	float,	otherwise	it	would	be	string

In	 lhs	operator	rhs ,	 lhs 	and	 rhs 	are	always	the	same	type	and	return
boolean.	 =~ 	is	a	semantics	version	operator	which	requires	both	sides	to	be
string

Evaluation	rules	are	obvious.	 =~ 	respect	semantics	version,	for	example,	the
underlying	engine

|	conditional-expression	&&	conditional-expression
|	conditional-expression	||	conditional-expression
|	atom-predicate

atom-predicate
|	atom	operator	atom
|	defined	UIDENT
|	undefined	UIDENT

operator
|	(=	|	<	|	>	|	<=	|	>=	|	=~)

atom
|	UIDENT	|	INT	|	STRING	|	FLOAT

semver	Location.none	"1.2.3"	"~1.3.0"	=	false;;
semver	Location.none	"1.2.3"	"^1.3.0"	=	true	;;
semver	Location.none	"1.2.3"	">1.3.0"	=	false	;;
semver	Location.none	"1.2.3"	">=1.3.0"	=	false	;;
semver	Location.none	"1.2.3"	"<1.3.0"	=	true	;;
semver	Location.none	"1.2.3"	"<=1.3.0"	=	true	;;
semver	Location.none	"1.2.3"	"1.2.3"	=	true;;

Examples
lwt_unix.mli

Built	in	variables	and	custom	variables

Changes	to	command	line	options

For	BuckleScript	users,	nothing	needs	to	be	done	(it	is	baked	in	the	language
level),	for	non	BuckleScript	users,	we	provide	an	external	pre-processor,	so	it	will
work	with	other	OCaml	compilers	too.	Note	that	the	bspp.ml	is	a	stand	alone	file,
so	that	it	even	works	without	compilation.

Example

type	open_flag	=
				Unix.open_flag	=
		|	O_RDONLY
		|	O_WRONLY
		|	O_RDWR
		|	O_NONBLOCK
		|	O_APPEND
		|	O_CREAT
		|	O_TRUNC
		|	O_EXCL
		|	O_NOCTTY
		|	O_DSYNC
		|	O_SYNC
		|	O_RSYNC
#if	OCAML_VERSION	=~	">=3.13"	then
		|	O_SHARE_DELETE
#end
#if	OCAML_VERSION	=~	">=4.01"	then
		|	O_CLOEXEC
#end

ocamlscript>bsc.exe	-bs-D	CUSTOM_A="ghsigh"	-bs-list-conditionals
OCAML_PATCH	"BS"
BS_VERSION	"1.2.1"
OS_TYPE	"Unix"
BS	true
CUSTOM_A	"ghsigh"
WORD_SIZE	64
OCAML_VERSION	"4.02.3+BS"
BIG_ENDIAN	false

bsc.exe	-c	lwt_unix.mli

https://github.com/bloomberg/bucklescript/blob/master/jscomp/bin/bspp.ml

WARNING

This	is	a	very	small	extension	to	the	OCaml	language,	it	is
backward	compatible	with	OCaml	language	with	such	exception.

1.	 #elif 	at	the	beginning	of	a	line	is	interpreted	as	static	if,
there	is	no	issue	with	 #if 	or	 #end ,	since	they	are	already
keywords

Build	system	support
The	BuckleScript	compilation	model	is	similar	to	OCaml	native	compiler.	If	b.ml
depends	on	 a.ml ,	you	have	to	compile	a.ml 	and	 a.mli 	first.

NOTE

The	technical	reason	is	that	BuckleScript	will	generate
intermediate	files	with	the	extension	 .cmj 	which	are	later	used
for	cross	module	inlining,	arity	inference	and	other	information.

BuckleScript	distribution	has	bsdep.exe 	which	has	the	same	interface	as
ocamldep

Here	is	a	simple	Makefile	to	get	started:

Makefile

ocamlc	-pp	'bspp.exe'	-c	lwt_unix.mli
ocamlc	-pp	'ocaml	-w	-a	bspp.ml'	-c	lwt_unix.mli

let	f	x	=
		x
#elif	(1)

OCAMLC=bsc.exe	(1)
OCAMLDEP=bsdep.exe	(2)
SOURCE_LIST	:=	src_a	src_b
SOURCE_MLI		=	$(addsuffix	.mli,	$(SOURCE_LIST))
SOURCE_ML			=	$(addsuffix	.ml,	$(SOURCE_LIST))
TARGETS	:=	$(addsuffix	.cmj,	$(SOURCE_LIST))
INCLUDES=

1.	 bsc.exe	is	the	BuckleScript	compiler

2.	 ocamldep	executable	is	part	of	the	OCaml	compiler	installation

In	theory,	people	need	run	make	depend	&&	make	all ,	 make	depend 	will
calculate	dependency	while	 make	all 	will	do	the	job.

However,	in	practice,	people	used	to	use	a	file	watch	service,	take	watchman	for
example,	you	need	json	configure

build.json

1.	 whenever	such	files	changed,	it	will	trigger	 command 	field	to	be	run

build.sh

1.	 build

2.	 update	the	dependency

Now	in	your	working	directory,	type	watchman	-j	<	build.json 	and	enjoy	the
lightning	build	speed.

all:	$(TARGETS)
.mli:.cmi
								$(OCAMLC)	$(INCLUDES)	$(COMPFLAGS)		-c	$<
.ml:.cmj:
								$(OCAMLC)	$(INCLUDES)	$(COMPFLAGS)		-c	$<
-include	.depend
depend:
								$(OCAMLDEP)	$(INCLUDES)	$(SOURCE_ML)	$(SOURCE_MLI)	>	.depend

[
				"trigger",	".",	{
								"name":	"build",
								"expression":	["pcre",	"(\\.(ml|mll|mly|mli|sh|sh)$|Makefile)"],	(1)
								"command":	["./build.sh"],
								"append_files"	:	true
				}
]

make	-r	-j8	all	(1)
make	depend	(2)

https://facebook.github.io/watchman/

FAQ
1.	 How	does	IO	work	in	browser?

In	general,	it	is	very	hard	to	simulate	IO	in	browser,	we	recommend	users	to
write	bindings	to	NodeJS	directly	for	server	side,	or	use	 Js.log 	in	client	side,
see	disucssions	in	#748

2.	 The	compiler	does	not	build?

In	production	mode,	the	compiler	is	a	single	file	in	 jscomp/bin/compiler.ml .
If	it	is	not	compiling,	make	sure	you	have	the	right	OCaml	compiler	version.
Currently	the	OCaml	compiler	is	a	submodule	of	BuckleScript.	Make	sure	the
exact	commit	hash	matches	(we	only	update	the	compiler	occasionally).

3.	Which	version	of	JavaScript	syntax	does	BuckleScript	target?

BuckleScript	targets	ES5.

4.	 Does	BuckleScript	work	with	merlin?

Yes,	you	need	edit	your	.merlin 	file:

Note	there	is	a	upstream	fix	in	Merlin,	make	sure	your	merlin	is	updated

5.	What	polyfills	does	BuckleScript	need?

Math.imul:	This	polyfill	is	needed	for	int32 	multiplication.	BuckleScript
provides	this	by	default(when	feature	detection	returns	false),	no	action	is
required	from	the	user.

TypedArray:	The	TypedArray	polyfill	is	not	provided	by	BuckleScript	and	it’s
the	responsibility	of	the	user	to	bundle	the	desired	polyfill	implementation
with	the	BuckleScript	generated	code.

The	following	functions	from	OCaml	stdlib
require	the	TypedArray	polyfill:

B	node_modules/bs-platform/lib/ocaml
S	node_modules/bs-platform/lib/ocaml
FLG	-ppx	node_modules/bs-platform/bin/bsppx.exe

https://github.com/bloomberg/bucklescript/issues/748
https://github.com/the-lambda-church/merlin/issues/568

Int64.float_of_bits

Int64.bits_of_float

Int32.float_of_bits

Int32.bits_of_float

WARNING

For	the	current	BuckleScript	version,	if	the	user	does	not
bundle	the	TypedArray	polyfill,	the	JavaScript	engine
does	not	support	it	and	user	used	functions	mentioned
above,	the	code	will	fail	at	runtime.

High	Level	compiler	work=ow
The	high	level	architecture	is	illustrated	below:

Source	Language
		|
		|	(Reuse	OCaml	Parser)
		v
Surface	Syntax	Tree
		|
		|	(built	in	Syntax	tree	transformation)
		v
Surface	Syntax	Tree
		|
		|	(Reuse	OCaml	Type	checker)
		v
Typedtree
		|
		|	(Reuse	OCaml	pattern	match	compiler	and	erase	types)
		|
		|
OCaml	Lambda	IR
		|
		|
		v
Buckle	Lambda	IR	------------------+
		|			^																												|
		|			|																					Lambda	Passes	(lam_*	files)
		|			|													Optimization/inlining/dead	code	elimination
		|			\																												|
		|				\	--------------------------+
		|

Design	Principles

The	current	design	of	BuckleScript	follows	several	high	level	principles.	While
those	principles	might	change	in	the	future,	there	are	enforced	today	and	can
explain	certain	technical	limitations	BuckleScript	has.

Lambda	Representation

As	pictured	in	the	diagram	above,	BuckleScript	is	primarily	based	on	the	Lambda
representation	of	the	OCaml	compiler.	While	this	representation	is	quite	rich,
some	information	is	lost	from	the	upstream	representation.	The	patch	to	the
OCaml	compiler	tries	to	enrich	this	representation	in	a	non-intrusive	way	(see
next	section).

Minimal	Patch	to	the	OCaml	compiler

BuckleScript	requires	patches	to	the	OCaml	compiler.	One	of	the	main	reasons	is
to	enrich	the	Lambda	representation	so	that	the	generated	code	is	as	nice	as
possible.	A	design	goal	is	to	keep	those	patches	minimal	and	useful	for	the	OCaml
compiler	in	general	so	that	they	can	later	be	integrated.

NOTE

A	common	question	is	to	wonder	why	BuckleScript	transpiles	an
OCaml	record	value	to	a	JavaScript	array	while	a	more	intuitive
representation	would	be	a	JavaScript	object.	This	technical	decision
is	a	direct	consequence	of	the	above	2	design	principles:	the
Lambda	layer	assumes	in	a	lot	of	places	that	a	record	value	is	an

		|		Self	tail	call	elimination
		|		Constant	folding	+	propagation
		V
JS	IR	(J.ml)		---------------------+
		|			^																												|
		|			|																					JS	Passes	(js_*	files)
		|			|												Optimization/inlining/dead	code	elimination
		|			\																												|
		|				\		-------------------------+
		|
		|		Smart	printer	includes	scope	analysis
		|
		V
Javascript	Code

array	and	such	modification	would	be	too	large	of	a	change	to
OCaml	compiler.

Soundness

BuckleScript	preserves	the	soundness	of	the	OCaml	language.	Assuming	the	FFI	is
correctly	implemented,	the	type	safety	is	preserved.

Minimal	new	symbol	creation

In	order	to	make	the	JavaScript	generated	code	as	close	as	possible	to	the	original
OCaml	core	we	thrive	to	introduce	as	few	new	symbols	as	possible.

Runtime	representation
Below	is	a	description	of	how	OCaml	values	are	encoded	in	JavaScript,	the
internal	description	means	users	should	not	rely	on	its	actual	encoding	(and	it
is	subject	to	change).	We	recommend	that	you	write	setter/getter	functions	to
manipulate	safely	OCaml	values	from	JavaScript.

For	example,	users	should	not	rely	on	how	OCaml	list 	is	encoded	in	JavaScript;
instead,	the	OCaml	stdlib	provides	three	functions:	 List.cons ,	 List.hd 	and
List.tl .	JavaScript	code	should	only	rely	on	those	three	functions.

Simple	OCaml	type

ocaml	type JavaScript	type

int number

nativeint number

int32 number

float number

bool number

true	→	1

false	→	0

int64 Array	of	size	two	numbers	 [hi,lo] .	 hi
is	signed	while	 lo 	is	unsigned

char number

for	example:

'a'	→	 97

string string

bytes number	array

NOTE
We	might	encode	it	as
buffer	in	NodeJS.

'a	array Array

record Array	internal

For	instance:

Output:

tuple Array

ocaml	type JavaScript	type

type	t	=	{	x	:	int;	y	:	int	}
let	v	=	{x	=	1;		y	=	2}

var	v	=	[1,2]

For	example:

(3,4)	→	[3,4]

’a	option internal

For	example:

None 	→	 0

Some	a 	→	 [a]

list internal

For	example:

[] 	→	 0

x::y 	→	 [x,y]

1::2::[3] 	→	 [1,	[2,	[3,	0]
]]

Variant internal

Polymorphic	variant internal

exception internal

extension internal

object internal

Js.boolean boolean

For	example:

Js.true_	→	true

Js.false_	→	false

ocaml	type JavaScript	type

Js	module

'a	Js.Null.t either	 'a 	or	 null

Js.Null	module

'a	Js.Undefined.t either	 'a 	or	 undefined

Js.Undefined

'a	Js.Null_undefined.t either	 'a ,	 null 	or	 undef

ocaml	type JavaScript	type

NOTE Js.to_opt 	is	optimized	when	the	option 	is	not	escaped

NOTE

In	the	future,	we	will	have	a	debug	mode,	in	which	the
corresponding	js	encoding	will	be	instrumented	with	more
information

As	we	clarified	before,	the	internal	representation	should	not	be	relied	upon.	We
are	working	to	provide	a	ppx	extension	as	below:

val	Js.to_bool:	Js.boolean	->	bool

val	to_opt	:	'a	t	->	'a	option

val	return	:	'a	->	'a	t

val	test	:	'a	t	->	bool

val	to_opt	:	'a	t	->	'a	option
val	return	:	'a	->	'a	t
val	test	:	'a	t	->	bool

type	t	=
		|	A
		|	B	of	int	*	int
		|	C	of	int	*	int

So	that	it	will	a	automatically	provide	constructing 	and	 destructing 	functions:

Integration	with	Reason
You	can	play	with	Reason	using	the	playground	Facebook	Reason

NOTE
The	playgrounds	are	only	for	demos	and	might	not	be	the	latest

You	should	always	use	the	command	line	as	your	production	tool.

There	is	a	stand	alone	example	here.

How	to	contribute

Build	the	compiler

The	development	of	BuckleScript	compiler	relies	on	2	tools	which	are	readily
available	in	 opam 	and	work	with	our	patched	OCaml	compiler:

ocamlbuild:	Default	build	tool	for	OCaml	project

camlp4:	Tool	used	to	generate	OCaml	code	for	processing	large	AST.	(j.ml	file).

After	having	installed	the	above	dependencies	from	opam	you	can	run	the
following:

		|	D	[@@bs.deriving{export}]

val	a	:	t
val	b	:	int	->	int	->	t
val	c	:	int	->	int	->	t
val	d	:	int

val	a_of_t	:	t	->	bool
val	d_of_t	:	t	->	bool
val	b_of_t	:	t	->	(int	*	int)	Js.Null.t
val	c_of_t	:	t	->	(int	*	int)	Js.Null.t

https:////bloomberg.github.io/bucklescript/reason-demo
https://github.com/bloomberg/bucklescript-addons/blob/master/examples/reason-demo/package.json
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual032.html
https://github.com/ocaml/camlp4

Build	the	runtime

Build	the	stdlib

Help	rewrite	the	whole	runtime	in	OCaml

BuckleScript	runtime	implementation	is	currently	a	mix	of	OCaml	and	JavaScript.
(jscomp/runtime 	directory).	The	JavaScript	code	is	defined	in	the	.ml 	file	using
the	 bs.raw 	syntax	extension.

The	goal	is	to	implement	the	runtime	purely	in	OCaml	and	you	can	help
contribute.

Each	new	PR	should	include	appropriate	testing.

Currently	all	tests	are	in	jscomp/test 	directory	and	you	should	either	add	a	new
test	file	or	modify	an	existing	test	which	covers	the	part	of	the	compiler	you
modified.

Add	the	filename	in	jscomp/test/test.mllib

Add	a	suite	test

The	specification	is	in	jscomp/test/mt.ml

For	example	some	simple	tests	would	be	like:

cd	jscomp/
./build.sh

cd	./runtime;	make	all

cd	./stdlib;	make	all

let	suites	:	_	Mt.pair_suites	=
			["hey",	(fun	_	->	Eq(true,	3	>	2));
							"hi",	(fun	_	->		Neq(2,3));
							"hello",	(fun	_	->	Approx(3.0,	3.0));
							"throw",	(fun	_	->	ThrowAny(fun	_	->	raise	3))
]

Run	the	tests

Suppose	you	have	mocha	installed,	if	not,	try	npm	install	mocha

mocha	-R	list	jscomp/test/your_test_file.js

See	the	coverage

npm	run	cover

Comparisons

Di9erence	from	js_of_ocaml

Js_of_ocaml	is	a	popular	compiler	which	compiles	OCaml’s	bytecode	into
JavaScript.	It	is	the	inspiration	for	this	project,	and	has	already	been	under
development	for	several	years	and	is	ready	for	production.	In	comparison,
BuckleScript,	while	moving	fast,	is	still	a	very	young	project.	BuckleScript’s
motivation,	like	 js_of_ocaml ,	is	to	unify	the	ubiquity	of	the	JavaScript	platform
and	the	truly	sophisticated	type	system	of	OCaml,	however,	there	are	some	areas
where	we	view	things	differently	from	 js_of_ocaml .	We	describe	below,	some	of
these	differences,	and	also	refer	readers	to	some	of	the	original	informal
discussions.

Js_of_ocaml	takes	lowlevel	bytecode	from	OCaml	compiler,	BuckleScript	takes
the	highlevel	rawlambda	representation	from	OCaml	compiler

Js_of_ocaml	focuses	more	on	existing	OCaml	eco-system(opam)	while
BuckleScript’s	major	goal	is	to	target	npm

Js_of_ocaml	and	BuckleScript	have	slightly	different	runtime	encoding	in
several	places,	for	example,	BuckleScript	encodes	OCaml	Array	as	JS	Array
while	js_of_ocaml	requires	its	index	0	to	be	of	value	0.

Both	projects	are	improving	quickly,	so	this	can	change	in	the	future!

let	()	=	Mt.from_pair_suites	__FILE__	suites

https://github.com/ocsigen/js_of_ocaml
https://github.com/ocsigen/js_of_ocaml/issues/338

Appendix	A:	CHANGES

1.2.1	+	dev

Features

add	 -bs-D 	 -bs-list-conditionals 	flags	#851

add	 -bs-syntax-only

add	 -bs-binary-ast 	#854

1.1.2

Fixes

Bug	fix	with	opam	issues	#831

Features

Provide	bspp.exe	for	official	compiler

1.1.1

Features

Add	bsdep.exe	#822

Conditional	compilation	support	#820

Relax	syntactic	restrictions	for	all	extension	point	#793	so	that	bs.obj ,	 obj ,
bs.raw ,	 raw ,	etc	will	both	work.	Note	that	all	attributes	will	still	be
qualified

Suport	bs.splice	in	bs.new	#793

Complete	`bs.splice	`	support	and	documentation	#798

1.03

Features

Add	an	option	-bs-no-warn-unused-bs-attribute 	#787

https://github.com/bloomberg/bucklescript/issues/851
https://github.com/bloomberg/bucklescript/issues/854
https://github.com/bloomberg/bucklescript/issues/831
https://github.com/bloomberg/bucklescript/issues/822
https://github.com/bloomberg/bucklescript/issues/820
https://github.com/bloomberg/bucklescript/issues/793
https://github.com/bloomberg/bucklescript/issues/793
https://github.com/bloomberg/bucklescript/issues/798
https://github.com/bloomberg/bucklescript/issues/787

Incompatible	changes	(due	to	proper	Windows	support):

bsc ,	 bspack 	and	 bsppx 	are	renamed	into	bsc.exe ,	 bspack.exe 	and
bsppx.exe

no	symlink	from	.bin	any	more.

Old	symlinks

Now	these	symlinks	are	removed,	you	have	to	refer	to	bs-
platform/bin/bsc.exe

1.02

Bug	fixes	and	enhancement

Fix	Bytes.blit	when	src==dst	#743

Features

Add	an	option	-bs-no-warn-ffi-type 	#783	By	default,	bsc.exe 	will	warn
when	it	detect	some	ocaml	datatype	is	passed	from/to	external	FFi

Add	an	option	-bs-eval 	784

1.01

FFI

support	fields	and	mutable	fields	in	JS	object	creation	and	private	method
#694

Introduce	phantom	arguments	(bs.ignore)	for	ad-hoc	polymorphism	#686

Bug	fixes	and	enhancement

		tmp>ls	-al	node_modules/.bin/
		total	96
		drwxr-xr-x		14	hzhang295		staff		476	Sep	20	17:26	.
		drwxr-xr-x			4	hzhang295		staff		136	Sep	20	17:27	..
		lrwxr-xr-x			1	hzhang295		staff			22	Sep	20	17:26	bsc	->	../bs-
platform/bin/bsc
		lrwxr-xr-x			1	hzhang295		staff			25	Sep	20	17:26	bspack	->	../bs-
platform/bin/bspack
		lrwxr-xr-x			1	hzhang295		staff			24	Sep	20	17:26	bsppx	->	../bs-
platform/bin/bsppx

https://github.com/bloomberg/bucklescript/issues/743
https://github.com/bloomberg/bucklescript/issues/783
https://github.com/bloomberg/bucklescript/issues/784
https://github.com/bloomberg/bucklescript/issues/694
https://github.com/bloomberg/bucklescript/issues/686

Enforce	 #= 	always	return	unit	#718	for	better	error	messages

1.0

Initial	release

Version	1.2.1+dev

https://github.com/bloomberg/bucklescript/issues/718

	BuckleScript User Manual
	Why BuckleScript
	Benefits of JavaScript platform
	Problems of JavaScript && how BuckleScript solves it

	Installation
	Install from NPM registries
	Install from source with npm package manager
	Install with minimal dependencies
	Introduction to OCaml ecosystem: OPAM

	Get Started
	First example
	An example with multiple modules

	Built in npm support
	Build OCaml library as a npm package
	To use OCaml library as a npm package
	Together
	Examples

	JS Calling OCaml
	OCaml calling JS
	Binding to simple JS functions values
	Binding to global value: bs.val
	Binding to JavaScript constructor: bs.new
	Binding to a value from a module: bs.module
	Binding the whole module as a value or function
	Binding to method: bs.send, bs.send.pipe
	Binding to dynamic key access/set: bs.set_index, bs.get_index
	Binding to Getter/Setter: bs.get, bs.set

	Splice calling convention: bs.splice
	Special types on external declarations: bs.string, bs.int, bs.ignore
	Using polymorphic variant to model enums and string types
	Using polymorphic variant to model event listener
	Phantom Arguments and ad-hoc polyrmophism

	Binding to NodeJS special variables: bs.node
	Binding to callbacks (high-order function)
	Uncurried calling convention as an optimization
	Bindings to this based callbacks: bs.this

	Binding to JS objects
	Simple object type
	Complex object type
	How to consume JS property and methods
	Create JS objects using bs.obj
	Create JS objects using external
	Create JS objects with this semantics
	Object label translation convention

	Embedding raw Javascript code
	Embedding raw JS code as an expression
	Embedding raw JS code as statements

	Debugger support
	Regex support
	Examples
	A simple example: binding to mocha unit test library

	Js module
	Extended compiler options
	-bs-main (single directory build)
	-bs-files
	-bs-package-name
	-bs-packge-output
	-bs-gen-tds
	-bs-no-warn-ffi-type
	-bs-eval
	-bs-no-builtin-ppx-ml, -bs-no-builtin-ppx-mli

	Semantics difference from other backends
	Custom data type
	Physical (in)equality
	String char range
	Weak map
	Integers
	Printf.printf
	Hashtbl hash algorithm
	Marshall
	Sys.argv, Sys.max_array_length, Sys.max_string_length
	Unsupported IO primitives

	Conditional compilation support - static if
	Concrete syntax
	Typing rules
	Examples
	Built in variables and custom variables
	Changes to command line options

	Build system support
	FAQ
	High Level compiler workflow
	Design Principles
	Soundness
	Minimal new symbol creation

	Runtime representation
	Simple OCaml type

	Integration with Reason
	How to contribute
	Build the compiler
	Build the runtime
	Build the stdlib
	Help rewrite the whole runtime in OCaml

	Comparisons
	Difference from js_of_ocaml

	Appendix A: CHANGES
	1.2.1 + dev
	1.1.2
	1.1.1
	1.03
	1.02
	1.01
	1.0

