Options
All
  • Public
  • Public/Protected
  • All
Menu

A Quaternion describes a rotation in 3D space. The Quaternion is mathematically defined as Q = xi + yj + z*k + w, where (i,j,k) are imaginary basis vectors. (x,y,z) can be seen as a vector related to the axis of rotation, while the real multiplier, w, is related to the amount of rotation.

param

Multiplier of the imaginary basis vector i.

param

Multiplier of the imaginary basis vector j.

param

Multiplier of the imaginary basis vector k.

param

Multiplier of the real part.

see

http://en.wikipedia.org/wiki/Quaternion

Hierarchy

  • Quaternion

Index

Constructors

constructor

  • new Quaternion(x?: number, y?: number, z?: number, w?: number): Quaternion

Methods

conjugate

copy

integrate

inverse

mult

normalize

normalizeFast

set

  • set(x: number, y: number, z: number, w: number): Quaternion

setFromAxisAngle

setFromVectors

slerp

  • Performs a spherical linear interpolation between two quat

    Parameters

    • toQuat: Quaternion

      second operand

    • t: number

      interpolation amount between the self quaternion and toQuat

    • target: Quaternion = ...

      A quaternion to store the result in. If not provided, a new one will be created.

    Returns Quaternion

    The "target" object

toArray

  • toArray(): [number, number, number, number]

toAxisAngle

  • toAxisAngle(targetAxis?: Vec3): [Vec3, number]
  • Converts the quaternion to [ axis, angle ] representation.

    Parameters

    • targetAxis: Vec3 = ...

      A vector object to reuse for storing the axis.

    Returns [Vec3, number]

    An array, first element is the axis and the second is the angle in radians.

toEuler

  • toEuler(target: Vec3, order?: string): void

toString

  • toString(): string

vmult