Coherent PDF
C APl and Command Line Tools

User Manual

Version 2.5 (January 2022)

C

Coherent Graphics Ltd

For bug reports, feature requests and comments, email
contact@coherentgraphics.co.uk

©2022 Coherent Graphics Limited. All rights reserved. ISBN 978-0957671140

Adobe, Acrobat, and Adobe PDF are registered trademarks of Adobe Systems Incorporated.
Windows, Powerpoint and Excel are registered trademarks of Microsoft Corporation.

Quickstart Examples

Just a few of the facilities provided by the Coherent PDF Command Line Tools. See each chapter
for more commands and full details.

Chapter 1: Basic Usage

cpdf in.pdf 1-3,6 -o out.pdf

Read in.pdf, select pages 1, 2, 3 and 6, and write those pages to out . pdf.

cpdf in.pdf even -o out.pdf

Select the even pages (2, 4, 6...) from in.pdf and write those pages to out . pdf.

cpdf -merge in.pdf in2.pdf AND -add-text "Copyright 2021"
-0 out.pdf

Using AND to perform several operations in order, here merging two files together and adding a
copyright stamp to every page.

cpdf —-args control.txt

Read control.txt and use its contents as the command line arguments for cpdf.

Chapter 2: Merging and Splitting

cpdf -merge in.pdf in2.pdf -o out.pdf

Merge in.pdf and in2.pdf into one document, writing to out . pdf.

iii

cpdf -split in.pdf -o Chunk%%%.pdf -chunk 10

Split in.pdf into ten-page chunks, writing them to Chunk001 . pdf, Chunk002.pdf etc.

cpdf -split-bookmarks 0 in.pdf -o @N.pdf

Split in.pdf on bookmark boundaries, writing each to a file whose name is the bookmark
label.

Chapter 3: Pages

cpdf -scale-page "2 2" in.pdf -o out.pdf

Scale both the dimensions and contents of in.pdf by a factor of two in x and y directions.

cpdf -scale-to-fit usletterportrait in.pdf -o out.pdf

Scale the pages in in. pdf to fit the US Letter page size, writing to out . pdf

cpdf -shift "26pt 18mm" in.pdf -o out.pdf

Shift the contents of the page by 26 pts in the x direction, and 18 millimetres in the y direction,
writing to out . pdf

cpdf -rotate-contents 90 in.pdf -o out.pdf

Rotate the contents of the pages in in.pdf by ninety degrees and write to out . pd£.

cpdf —-crop "0 0 600pt 400pt" in.pdf -o out.pdf

Crop the pages in in. pdf to a 600 pts by 400 pts rectangle.

Chapter 4: Encryption and Decryption

cpdf —-encrypt 128bit fred joe in.pdf -o out.pdf

iv

Encrypt in.pdf using 128bit PDF encryption using the owner password fred and the user
password joe and writing the encrypted file to out . pdf

cpdf —-decrypt in.pdf owner=fred -o out.pdf

Decrypt in.pdf using the owner password, writing to out . pdf.

Chapter 5: Compression

cpdf -compress in.pdf -o out.pdf

Compress the data streams in in.pdf, writing the result to out . pdf.

cpdf -decompress in.pdf -o out.pdf

Decompress the data streams in in.pdf, writing to out . pdf.

cpdf -squeeze in.pdf -o out.pdf

Squeeze in.pdf, writing to out . pdf. Squeezing rearranges the structure of the PDF file to
save space.

Chapter 6: Bookmarks

cpdf -list-bookmarks in.pdf

List the bookmarks in in.pdf.

cpdf —-add-bookmarks bookmarks.txt in.pdf -o out.pdf

Add bookmarks in the same form from a prepared file bookmarks. txt to in.pdf, writing to
out .pdf.

Chapter 7: Presentations

cpdf -presentation in.pdf 2-end -trans Split —-duration 10
-0 out.pdf

Use the Split style to build a presentation from the PDF in.pdf, each slide staying 10 seconds on
screen unless manually advanced. The first page, being a title does not move on automatically,
and has no transition effect.

Chapter 8: Logos, Watermarks and Stamps

cpdf -stamp-on watermark.pdf in.pdf -o out.pdf

Stamp the file watermark.pdf on to each page of in.pdf, writing the result to out . pdf.

cpdf -topleft 10 -font Courier
—add-text "Page %Page\nDate %d-%m-%Y" in.pdf -o out.pdf

Add a page number and date to all the pages in in.pdf using the Courier font, writing to
out .pdf.

Chapter 9: Multipage Facilities

cpdf -twoup-stack in.pdf -o out.pdf

Two up impose the file in.pdf, writing to out . pdf.

cpdf -pad-after in.pdf 1,3,4 -o out.pdf

Add extra blank pages after pages one, three and four of a document.

Chapter 10: Annotations

cpdf -list-annotations in.pdf

List the annotations in a file in.pdf to standard output.

Vi

cpdf -copy-annotations from.pdf in.pdf -o out.pdf

Copy the annotations from from.pdf to in.pdf, writing to out . pdf.

Chapter 11: Document Information and Metadata

cpdf -set-title "The New Title" in.pdf -o out.pdf

Set the document title of in.pdf. writing to out . pdf.

cpdf -hide-toolbar true in.pdf -o out.pdf

Set the document in.pdf to open with the PDF Viewer’s toolbar hidden, writing to out . pdf.

cpdf -set-metadata metadata.xml in.pdf -o out.pdf

Set the metadata in a PDF in.pdf to the contents of the file metadata.xml, and write the
output to out . pdf.

cpdf -set-page-layout TwoColumnRight in.pdf -o out.pdf

Set the document in.pdf to open in PDF Viewer showing two columns of pages, starting on
the right, putting the result in out . pdf.

cpdf -set-page-mode FullScreen in.pdf -o out.pdf

Set the document in.pdf to open in PDF Viewer in full screen mode, putting the result in
out .pdf.

Chapter 12: File Attachments

cpdf —attach-file sheet.xls in.pdf -o out.pdf

Attach the file sheet .x1s to in.pdf, writing to out . pdf.

vii

cpdf -remove-files in.pdf -o out.pdf

Remove any attachments from in.pdf, writing to out . pdf.

Chapter 13: Working with Images

cpdf -image-resolution 600 in.pdf

Identify and list any image used at less than 600dpi.

cpdf —-extract-images in.pdf —im /usr/bin/magick —-o output/%%%

Extract images from in.pdf to directory output (with the help of imagemagick).

Chapter 14: Fonts

cpdf —-list-fonts in.pdf

List the fonts in use, and what pages they are used on.

cpdf -gs /usr/bin/gs -embed-missing-fonts in.pdf -o out.pdf

Embed missing fonts (with the help of Ghostscript).

Chapter 15: PDF and JSON

cpdf in.pdf -output-json -output-json-parse-content-streams
-0 out.json

Write the PDF in JSON format to the given file, parsing its content streams into individual JSON
objects too.

cpdf -j in.json -o out.pdf

Load a PDF in JSON format, writing to an output PDF.

viii

Chapter 16: Optional Content Groups

cpdf -ocg-list in.pdf

List the optional content groups by name.

cpdf -ocg-coalesce-on-name in.pdf -o out.pdf

Coalesce optional content groups after merging or stamping two files with OCGs with like
names.

Chapter 17: Creating New PDFs

cpdf -create-pdf -create-pdf-pages 20
—create-pdf-papersize usletterportrait -o out.pdf

Create a US Letter PDF of twenty pages.

cpdf —-typeset file.txt —-create-pdf-papersize a3portrait
—-font Courier -font-size 10 -o out.pdf

Typeset a text file as PDF on A3 paper with Courier 10 point font.

Chapter 18: Miscellaneous

cpdf -blacktext in.pdf -o out.pdf

Blacken all the text in in.pdf, writing to out . pdf.

cpdf -thinlines 2pt in.pdf -o out.pdf

Make sure all lines in in.pdf are at least 2 pts wide, writing to out . pdf.

Example Program in C

This program loads a file he1lo.pdf from disk and writes out a document with the original in-
cluded three times. Note the use of cpdf_startup, cpdf_lastErrorand cpdf_clearError

#include <stdbool.h>
#include "cpdflibwrapper.h"

int main (int argc, char xx argv)

{

/* Initialise cpdf x/
cpdf_startup (argv);

/+* We will take the input hello.pdf and repeat it three times =/
int mergepdf = cpdf_fromFile ("hello.pdf", "");

/* Check the error state =*/
if (cpdf_lastError) return 1;

/* Clear the error state =*/
cpdf_clearError();

/* The array of PDFs to merge =*/
int pdfs[] = {mergepdf, mergepdf, mergepdf};

/* Merge them =*/
int merged = cpdf_mergeSimple (pdfs, 3);

if (cpdf_lastError) return 1;
cpdf_clearError();

/+ Write output =/
cpdf_toFile (merged, "merged.pdf", false, false);

if (cpdf_lastError) return 1;

return 0;

Xi

Xii

Contents

1 Basic Usage

1.1 Documentation
1.2 InputandOutputFiles oo
1.3 ImputRanges. e
1.4 Working with Encrypted Documents
1.5 Standard Input and Standard Output
1.6 Doing Several Things at Once with AND
1.7 Units e
1.8 Setting the Producer and Creator
1.9 PDF VersionNumbers
110 FileIDs oo
1.11 Linearization.
1.12 ObjectStreams
1.13 Malformed Files
1.14 ErrorHandling
115 Control Files
1.16 String Arguments L
1.17 Text Encodings
118 FontEmbedding
Merging and Splitting

21 Merging
22 Splitting
2.3 SplittingonBookmarks. oo oo
2.4 Encrypting with Split and Split Bookmarks
Pages

31 PageSizes
32 ScalePages e
3.3 ShiftPageContents
34 RotatingPages
35 FlippingPages
3.6 Boxesand Cropping
3.7 Showing Boxes and Printer’'sMarks

10

Encryption and Decryption

41 Introduction
42 EncryptingaDocument
43 Decryptinga Document
Compression
51 Decompressinga Document
52 Compressinga Document
53 SqueezingaDocument,
Bookmarks
6.1 ListBookmarks
6.1.1 Destinations
6.2 Remove Bookmarks.
6.3 AddBookmarks L oL
6.4 Opening bookmarks
6.5 MakingaTableof Contents
Presentations

Watermarks and Stamps

8.1 AddaWatermarkorLogo
8.2 Stamp Text, Datesand Times.
821 PageNumbers
8.22 Date and Time Formats
823 BatesNumbers
824 Position oL
825 FontandSize
826 Colors o
827 OutlineText
828 Multi-lineText
829 Special Characters
8.3 Stamping Graphics L.
8.4 Low-level facilities

Multipage Facilities

9.1 Inserting BlankPages
92 Imposition

Annotations

10.1 Listing Annotations
10.2 Copying Annotations
10.3 Removing Annotations

Xiv

33
33
34
34

37
37
37
38

49

53
54
54
55
55
55
56
56
57
58
58
59
59
59

65
65
66

11

12

13

14

15

16

17

18

Document Information and Metadata 73

11.1 Reading Document Information. 74
11.2 Setting Document Information 75
11.3 XMP Metadata e 76
11.4 Upon OpeningaDocument 76

1141 Pagelayout 76

1142 PageMode. 77

1143 DisplayOptions. 78
115 PageLabels 78
File Attachments 87
12.1 Adding Attachments 87
12.2 Listing Attachments L o 87
12.3 Removing Attachments 88
12.4 Dumping AttachmentstoFile 88
Working with Images 91
13.1 Extractingimages e 91
13.2 Detecting Low-resolutionImages 91
13.3 RemovinganImage. L 92
Fonts 95
14.1 ListingFonts 95
14.2 Listing charactersinafont L . 96
143 CopyingFonts 97
144 RemovingFonts L 97
145 MissingFonts 97
PDF and JSON 101
15.1 Converting PDFtoJSON 101
15.2 Converting JSONtoPDF 103
Optional Content Groups 105
Creating New PDFs 107
171 AnewblankPDF 107
17.2 ConvertatextfiletoPDF. 107
Miscellaneous 109
18.1 Draft Documents 109
18.2 Blackening Text, Linesand Fills 110
18.3 HairlineRemoval 110
18.4 Garbage Collection 111
18.5 Change PDF Version Number 111
18.6 CopyID e 111
187 RemovelD e 111
18.8 ListSpotColours e 112
18.9 PDF Dictionary Entries 112

XV

18.10Removing Clipping

A Dates
A.1 PDF Date Format .

A2 XMP Metadata Date Format

Xvi

Typographical Conventions

Command lines to be typed are shown in typewriter font in a box. For example:

cpdf in.pdf -o out.pdf

When describing the general form of a command, rather than a particular example, square brack-
ets [] are used to enclose optional parts, and angled braces <> to enclose general descriptions
which may be substituted for particular instances. For example,

cpdf <operation> in.pdf [<range>] -o out.pdf

describes a command line which requires an operation and, optionally, a range. An exception is
that we use in.pdf and out . pdf instead of <input file> and <output file> toreduce
verbosity. Under Microsoft Windows, type cpdf . exe instead of cpdf.

XVvii

Chapter 1

Basic Usage

—help

e

—recrypt

—-stdin

—-producer <text>

-1
—-no-preserve-objstm
—args <filename>
-raw

—gs—malformed
—error—-on-malformed

—-—help -version

-1 —-idir <directory>
—decrypt-force —-stdout

-stdin-user <password> -stdin-owner <password>
—creator <text> —change-id

—-cpdflin <filename> ~-keep-1

—create-objstm —control <filename>
-utf8 -stripped
-no—-embed-font -gs

—gs—-malformed-force —-gs—quiet

The Coherent PDF tools provide a wide range of facilities for modifying PDF files created
by other means. There is a single command-line program cpdf (cpdf . exe under Microsoft
Windows). The rest of this manual describes the options that may be given to this program.

1.1 Documentation

The operation ~help / --help prints each operation and option together with a short de-
scription. The operation —~version prints the cpdf version string.

1.2 Input and Output Files

The typical pattern for usage is

cpdf [<operation>]

<input file(s)> -o <output file>

2 Chapter 1. Basic Usage

and the simplest concrete example, assuming the existence of a file in. pdf is:

cpdf in.pdf -o out.pdf

which copies in.pdf to out.pdf. The input and output may be the same file. Of course, we
should like to do more interesting things to the PDF file than that!

Files on the command line are distinguished from other input by their containing a period.
If an input file does not contain a period, it should be preceded by -i. For example:

cpdf -i in -o out.pdf

A whole directory of files may be added (where a command supports multiple files) by using
the —idir option:

cpdf -merge -idir myfiles -o out.pdf

The files in the directory myfiles are considered in alphabetical order. They must all be PDF
files. If the names of the files are numeric, leading zeroes will be required for the order to be
correct (e.g 001 .pdf, 002.pdf etc).

To restrict cpdf to files ending in . pdf (in upper or lower or mixed case) add the option
—-idir-only-pdfs before —idir:

cpdf —merge -idir-only-pdfs —-idir myfiles -o out.pdf

1.3 Input Ranges

An input range may be specified after each input file. This is treated differently by each operation.
For instance

cpdf in.pdf 2-5 -o out.pdf

extracts pages two, three, four and five from in.pdf, writing the result to out . pdf, assuming
that in.pdf contains at least five pages. Here are the rules for building input ranges:

® A dash (-) defines ranges, e.g. 1-5 or 6-3.
* A comma (,) allows one to specify several ranges, e.g. 1-2, 4-5.
¢ The word end represents the last page number.

¢ The words odd and even can be used in place of or at the end of a page range to restrict
to just the odd or even pages.

Chapter 1. Basic Usage 3

The words portrait and landscape can be used in place of or at the end of a page
range to restrict to just those pages which are portrait or landscape. Note that the meaning
of “portrait” and “landscape” does not take account of any viewing rotation in place
(use —~upright from chapter 3 first, if required). A page with equal width and height is
considered neither portrait nor landscape.

The word reverse is the same as end-1.
The word all is the same as 1-end.
A range must contain no spaces.

A tilde (™) defines a page number counting from the end of the document rather than the
beginning. Page "1 is the last page, ~2 the penultimate page etc.

Prepending NOT to a whole page range inverts it.

Prepending <n>DUP to a whole page range duplicates each page of the range <n> times.

For example:

Remove pages three, four, five and six from a document.

Extract the odd pages 1,3,...,13,15.

Rotate all landscape pages by ninety degrees.

Duplicate the front page of a document, perhaps as a fax cover sheet.

Extract the last three pages of a document, in order.

Produce the pages 1,1,2,2,....10,10.

cpdf in.pdf 1,2,7-end -o out.pdf

cpdf in.pdf 1-16o0dd -o out.pdf

cpdf in.pdf landscape -rotate 90 -o out.pdf

cpdf in.pdf 1,all -o out.pdf

cpdf in.pdf "3-"1 -o out.pdf

cpdf in.pdf 2DUP1-10 -o out.pdf

14

Working with Encrypted Documents

In order to perform many operations, encrypted input PDF files must be decrypted. Some
require the owner password, some either the user or owner passwords. Either password is
supplied by writing user=<password> or owner=<password> following each input file
requiring it (before or after any range). The document will not be re-encrypted upon writing.
For example:

4 Chapter 1. Basic Usage

cpdf in.pdf user=charles -info
cpdf in.pdf owner=fred reverse -o out.pdf

To re-encrypt the file with its existing encryption upon writing, which is required if only the
user password was supplied, but allowed in any case, add the ~recrypt option:

cpdf in.pdf user=charles reverse -recrypt -o out.pdf

The password required (owner or user) depends upon the operation being performed. Separate
facilities are provided to decrypt and encrypt files (See Section 4).

When appropriate passwords are not available, the option ~decrypt-force may be added
to the command line to process the file regardless.

1.5 Standard Input and Standard Output

Thus far, we have assumed that the input PDF will be read from a file on disk, and the output
written similarly. Often it’s useful to be able to read input from stdin (Standard Input) or
write output to stdout (Standard Output) instead. The typical use is to join several programs
together into a pipe, passing data from one to the next without the use of intermediate files. Use
-stdin to read from standard input, and -stdout to write to standard input, either to pipe
data between multiple programs, or multiple invocations of the same program. For example,
this sequence of commands (all typed on one line)

cpdf in.pdf reverse -stdout |
cpdf —-stdin 1-5 -stdout |
cpdf -stdin reverse -o out.pdf

extracts the last five pages of in.pdf in the correct order, writing them to out . pdf. It does
this by reversing the input, taking the first five pages and then reversing the result.

To supply passwords for a file from -stdin, use -stdin-owner <password> and/or
-stdin-user <password>.

Using -stdout on the final command in the pipeline to output the PDF to screen is not
recommended, since PDF files often contain compressed sections which are not screen-readable.

Several cpdf operations write to standard output by default (for example, listing fonts). A
useful feature of the command line (not specific to cpdf) is the ability to redirect this output to
a file. This is achieved with the > operator:

cpdf —-info in.pdf > file.txt

Use the —~info operation (See Section 11.1), redirecting the output to file.txt.

Chapter 1. Basic Usage 5

1.6 Doing Several Things at Once with AND

The keyword AND can be used to string together several commands in one. The advantage
compared with using pipes is that the file need not be repeatedly parsed and written out, saving
time.

To use AND, simply leave off the output specifier (e.g —o) of one command, and the input
specifier (e.g filename) of the next. For instance:

cpdf —-merge in.pdf in2.pdf AND -add-text "Label"
AND -merge in3.pdf -o out.pdf

Merge in.pdf and in2.pdf together, add text to both pages, append in3.pdf and write to
out .pdf.

To specify the range for each section, use ~range:

cpdf -merge in.pdf in2.pdf AND -range 2-4 -add-text "Label"
AND -merge in3.pdf -o out.pdf

1.7 Units

When measurements are given to cpdf, they are in points (1 point = 1/72 inch). They may
optionally be followed by some letters to change the measurement. The following are supported:

pt Points (72 points per inch). The default.
cm Centimeters

mm Millimeters

in Inches

For example, one may write 14mm or 21 . 6in. In addition, the following letters stand, in some
operations (-scale-page, -scale-to-fit, -scale-contents, —shift, -mediabox,
-crop) for various page dimensions:

Pw Page width

PH DPage height
PMINX Page minimum x coordinate
PMINY Page minimum y coordinate
PMAXX Page maximum x coordinate
PMAXY Page maximum y coordinate

Cw Crop box width

CH Crop box height
CMINX Crop box minimum x coordinate
CMINY Crop box minimum y coordinate
CMAXX Crop box maximum x coordinate
cMAXY Crop box maximum y coordinate

6 Chapter 1. Basic Usage

For example, we may write PMINX PMINY to stand for the coordinate of the lower left corner of
the page.

Simple arithmetic may be performed using the words add, sub, mul and div to stand for
addition, subtraction, multiplication and division. For example, one may write 14in sub 30pt
or PMINX mul 2

1.8 Setting the Producer and Creator
The -producer and —creator options may be added to any cpdf command line to set the

producer and/or creator of the PDF file. If the file was converted from another format, the
creator is the program producing the original, the producer the program converting it to PDE.

cpdf -merge in.pdf in2.pdf -producer MyMerger -o out.pdf

Merge in.pdf and in2.pdf, setting the producer to MyMerger and writing the output to out . pdf.

1.9 PDF Version Numbers

When an operation which uses a part of the PDF standard which was introduced in a later
version than that of the input file, the PDF version in the output file is set to the later version
(most PDF viewers will try to load any PDF file, even if it is marked with a later version number).
However, this automatic version changing may be suppressed with the ~keep-version option.
If you wish to manually alter the PDF version of a file, use the ~set-version operation
described in Section 18.5.

1.10 File IDs

PDF files contain an ID (consisting of two parts), used by some workflow systems to uniquely
identify a file. To change the ID, behavior, use the ~change~-id operation. This will create a
new ID for the output file.

cpdf -change-id in.pdf -o out.pdf

Write in.pdf to out . pdf, changing the ID.

1.11 Linearization

Linearized PDF is a version of the PDF format in which the data is held in a special manner to
allow content to be fetched only when needed. This means viewing a multipage PDF over a
slow connection is more responsive. By default, codf does not linearize output files. To make it

Chapter 1. Basic Usage 7

do so, add the -1 option to the command line, in addition to any other command being used.
For example:

cpdf -1 in.pdf -o out.pdf

Linearize the file in.pdf, writing to out . pdf.

This requires the existence of the external program cpdf1in which is provided with commercial
versions of cpdf. This must be installed as described in the installation documentation provided
with your copy of cpdf. If you are unable to install cpdf1in, you must use —cpdflin to let
cpdf know where to find it:

cpdf.exe —cpdflin "C:\\cpdflin.exe" -1 in.pdf -o out.pdf

Linearize the file in.pdf, writing to out . pd£.

In extremis, you may place cpdflin and its resources in the current working directory, though
this is not recommended. For further help, refer to the installation instructions for your copy of
cpdf.

To keep the existing linearization status of a file (produce linearized output if the input is
linearized and the reverse), use ~keep-1 instead of —1.

1.12 Object Streams

PDF 1.5 introduced a new mechanism for storing objects to save space: object streams. by
default, cpdf will preserve object streams in input files, creating no more. To prevent the
retention of existing object streams, use -no-preserve-objstm:

cpdf -no-preserve-objstm in.pdf -o out.pdf

Write the file in.pdf to out . pdf, removing any object streams.

To create new object streams if none exist, or augment the existing ones, use —~create-objstm:

cpdf —-create-objstm in.pdf -o out.pdf

Write the file in. pdf to out . pdf, preserving any existing object streams, and creating any new ones
for new objects which have been added.

To create wholly new object streams, use both options together:

cpdf —-create-objstm -no-preserve-objstm in.pdf -o out.pdf

Write the file in. pdf to out . pdf with wholly new object streams.

8 Chapter 1. Basic Usage

Files written with object streams will be set to PDF 1.5 or higher, unless ~keep-version is
used (see above).

1.13 Malformed Files

There are many malformed PDF files in existence, including many produced by otherwise-
reputable applications. cpdf attempts to correct these problems silently.

Grossly malformed files will be reconstructed. The reconstruction progress is shown on
stderr (Standard Error):

Scpdf in.pdf -o out.pdf

couldn't lex object number

Attempting to reconstruct the malformed pdf in.pdf...
Read 5530 obijects

Malformed PDF reconstruction succeeded!

If cpdf cannot reconstruct a malformed file, it is able to use the gs program to try to reconstruct
the PDF file, if you have it installed. For example, if gs is installed and in your path, we might

try:

cpdf -gs gs —-gs-malformed in.pdf -o out.pdf

To suppress the output of gs use the ~gs—quiet option.

If the malformity lies inside an individual page of the PDF, rather than in its gross structure,
cpdf may appear to succeed in reconstruction, only to fail when processing a page (e.g when
adding text). To force the use of gs to pre-process such files so cpdf cannot fail on them, use

—gs—malformed-force:

cpdf in.pdf -gs gs —-gs-malformed-force -o out.pdf [-gs—quiet]

The command line for ~gs-malformed-force must be of precisely this form. Sometimes, on
the other hand, we might wish cpdf to fail immediately on any malformed file, rather than try
its own reconstruction process. The option ~error-on-malformed achieves this.

Sometimes (old, pre-ISO standardisation) files can be technically well-formed but use ineffi-
cient PDF constructs. If you are sure the input files you are using are well formed, the -fast
option may be added to the command line (or, if using AND, to each section of the command line).
This will use certain shortcuts which speed up processing, but would fail on badly-produced
files. The -~fast option may be used with:

Chapter 3
-rotate-contents -upright -vflip -hflip
-shift -scale-page -scale-to-fit -scale-contents

Chapter 1. Basic Usage 9

-show-boxes —-hard-box -trim-marks

Chapter 8
—add-text —-add-rectangle
—-stamp-on -stamp-under -combine-pages

Chapter 9
—-impose -impose-xy —-twoup -—-twoup-stack

If problems occur, refrain from using —fast.

1.14 Error Handling

When cpdf encounters an error, it exits with code 2. An error message is displayed on stderr
(Standard Error). In normal usage, this means it’s displayed on the screen. When a bad or
inappropriate password is given, the exit code is 1.

1.15 Control Files

cpdf -control <filename>
cpdf -args <filename>

Some operating systems have a limit on the length of a command line. To circumvent this, or
simply for reasons of flexibility, a control file may be specified from which arguments are drawn.
This file does not support the full syntax of the command line. Commands are separated by
whitespace, quotation marks may be used if an argument contains a space, and the sequence \ "
may be used to introduce a genuine quotation mark in such an argument.

Several -~control arguments may be specified, and may be mixed in with conventional
command-line arguments. The commands in each control file are considered in the order in
which they are given, after all conventional arguments have been processed. It is recommended
to use —args in all new applications. However, ~control will be supported for legacy
applications.

To avoid interference between —control and AND, a new mechanism has been added.
Using —args in place of ~control will perform direct textual substitution of the file into the
command line, prior to any other processing.

1.16 String Arguments
Command lines are handled differently on each operating system. Some characters are reserved

with special meanings, even when they occur inside quoted string arguments. To avoid this
problem, cpdf performs processing on string arguments as they are read.

10 Chapter 1. Basic Usage

A backslash is used to indicate that a character which would otherwise be treated specially
by the command line interpreter is to be treated literally. For example, Unix-like systems
attribute a special meaning to the exclamation mark, so the command line

cpdf -add-text "Hello!" in.pdf -o out.pdf

would fail. We must escape the exclamation mark with a backslash:

cpdf —-add-text "Hello\!" in.pdf -o out.pdf

It follows that backslashes intended to be taken literally must themselves be escaped (i.e. written
\\).

1.17 Text Encodings

Some cpdf commands write text to standard output, or read text from the command line or
configuration files. These are:

-info
—-list-bookmarks
-set—author etal.
—-list—annotations
—dump—-attachments

There are three options to control how the text is interpreted:

-utf8
—-stripped
-raw

Add ~ut £8 to use Unicode UTFS8, —~stripped to convert to 7 bit ASCII by dropping any high
characters, or —~raw to perform no processing. The default unless specified in the documentation
for an individual operation is ~stripped.

1.18 Font Embedding

Use the ~no-embed-font to avoid embedding the Standard 14 Font metrics when adding text
with —~add-text.

Chapter 1. Basic Usage 11

C Interface

/* CHAPTER 0. Preliminaries =/

/* The function cpdf_startup (argv) must be called before using the library.
*/
void cpdf_startup (char xx);

/* Return the version of the cpdflib library as a string =*/
char *cpdf_version();

/ *
* Some operations have a fast mode. The default is 'slow' mode, which works
* even on old-fashioned files. For more details, see section 1.13 of the
* CPDF manual. These functions set the mode globally.
*/
void cpdf_setFast();
void cpdf_setSlow();

Errors. cpdf_lastError and cpdf_lastErrorString hold information about the
last error to have occurred. They should be consulted after each call. If
cpdf_lastError is non-zero, there was an error, and cpdf_lastErrorString
gives details. If cpdf_lastError is zero, there was no error on the most

* recent cpdf call.

*/
extern int cpdf_lastError;
extern char *cpdf_lastErrorString;

* % ok X %

/* cpdf_clearError clears the current error state. */
void cpdf_clearError (void) ;

/ *
* cpdf_onExit is a debug function which prints some information about
* resource usage. This can be used to detect if PDFs or ranges are being
+ deallocated properly. Contrary to its name, it may be run at any time.
*/

void cpdf_onExit (void);

/+* CHAPTER 1. Basics */

/ *

* cpdf_fromFile(filename, userpw) loads a PDF file from a given file. Supply
* a user password (possibly blank) in case the file is encrypted. It won't be
* decrypted, but sometimes the password is needed just to load the file.

*/

int cpdf_fromFile (const char[], const charl[]);

/ *

* cpdf_fromFileLazy (pdf, userpw) loads a PDF from a file, doing only minimal

12 Chapter 1. Basic Usage

parsing. The objects will be read and parsed when they are actually
needed. Use this when the whole file won't be required. Also supply a user
password (possibly blank) in case the file is encrypted. It won't be

+ decrypted, but sometimes the password is needed just to load the file.

*/

int cpdf_fromFilelLazy (const char[], const char[]);

* % o

/ *
* cpdf_fromMemory (data, length, userpw) loads a file from memory, given a
* pointer and a length, and the user password.
*/

int cpdf_fromMemory (void %, int, const char[]);

/%

* cpdf_fromMemory (data, length, userpw) loads a file from memory, given a
* pointer and a length, and the user password, but lazily like

* cpdf_fromFilelazy.

*/

int cpdf_fromMemorylazy (void %, int, const charl]);

/% Standard page sizes. x/
enum cpdf_papersize {

cpdf_alportrait, /* AO0 portrait =/
cpdf_alportrait, /* Al portrait =/
cpdf_alportrait, /* A2 portrait x/
cpdf_a3portrait, /* A3 portrait */
cpdf_a4dportrait, /* A4 portrait =/
cpdf_abportrait, /* A5 portrait x/
cpdf_allandscape, /+ A0 landscape */
cpdf_allandscape, /+ Al landscape */
cpdf_a2landscape, /* A2 landscape x/
cpdf_a3landscape, /+ A3 landscape */
cpdf_ad4landscape, /+ A4 landscape */
cpdf_ab5landscape, /* A5 landscape x/

cpdf_usletterportrait, /* US Letter portrait =/

cpdf_usletterlandscape, /* US Letter landscape */

cpdf_uslegalportrait, /* US Legal portrait =/

cpdf_uslegallandscape /+ US Legal landscape */
}i

/+ Remove a PDF from memory, given its number. =/
voild cpdf_deletePdf (int);

/%
* Calling cpdf_replacePdf (a, b) places PDF b under number a. Number b is no
* longer available.
*/

void cpdf_replacePdf (int, int);

/%

* To enumerate the list of currently allocated PDFs, call

Chapter 1. Basic Usage 13

* cpdf_startEnumeratePDFs which gives the number, n, of PDFs allocated, then
* cpdf_enumeratePDFsInfo and cpdf_enumeratePDFsKey with index numbers from
* 0...(n — 1). Call cpdf_endEnumeratePDFs to clean up.
x/
int cpdf_startEnumeratePDFs (void);
int cpdf_enumeratePDFsKey (int) ;
char *cpdf_enumeratePDFsInfo (int);
void cpdf_endEnumeratePDFs (void) ;

/* Convert a figure in centimetres to points (72 points to 1 inch) =/
double cpdf_ptOfCm(double);

/* Convert a figure in millimetres to points (72 points to 1 inch) =/
double cpdf_ptOfMm(double) ;

/* Convert a figure in inches to points (72 points to 1 inch) =/
double cpdf_ptOfIn(double);

/* Convert a figure in points to centimetres (72 points to 1 inch) =/
double cpdf_cmOfPt (double);

/* Convert a figure in points to millimetres (72 points to 1 inch) =/
double cpdf_mmOfPt (double) ;

/* Convert a figure in points to inches (72 points to 1 inch) =/
double cpdf_inOfPt (double);

A page range is a list of page numbers used to restrict operations to
certain pages. A page specification is a textual description of a page
range, such as "1-12,18-end". Here is the syntax:

o A range must contain no spaces.

o A dash (-) defines ranges, e.g. 1-5 or 6-3.

o A comma (,) allows one to specify several ranges, e.g. 1-2,4-5.
o The word end represents the last page number.

o The words odd and even can be used in place of or at the end of a page
range to restrict to just the odd or even pages.

o The words portrait and landscape can be used in place of or at the end of
a page range to restrict to just those pages which are portrait or
landscape. Note that the meaning of "portrait" and "landscape" does not
take account of any viewing rotation in place (use cpdf_upright first, if
required) . A page with equal width and height is considered neither
portrait nor landscape.

L S S S S S N S N S S SN S S S N S

o The word reverse is the same as end-1.

—_
S

Chapter 1. Basic Usage

*
* o The word all is the same as l-end.
*
* 0o A tilde (7) defines a page number counting from the end of the document
* rather than the beginning. Page "1 is the last page, "2 the penultimate
* page etc.
*/
/%

*

cpdf_parsePagespec (pdf, range) parses a page specification with reference
* to a given PDF (the PDF is supplied so that page ranges which reference
* pages which do not exist are rejected).
x/

int cpdf_parsePagespec (int, const char([]);

/*
* cpdf_validatePagespec (range) validates a page specification so far as is
* possible in the absence of the actual document. Result is true if valid.
*/

int cpdf_validatePagespec (const char([]);

/*
* cpdf_stringOfPagespec (pdf, range) builds a page specification from a page
* range. For example, the range containing 1,2,3,6,7,8 in a document of 8
* pages might yield "1-3, 6-end"
*/
char xcpdf_stringOfPagespec(int, int);

/+ cpdf_blankRange () creates a range with no pages in. x/
int cpdf_blankRange (void);

/+ cpdf_deleteRange (range) deletes a range. =/
void cpdf_deleteRange (int);

/ *
* cpdf_range (from, to) builds a range from one page to another inclusive. For
* example, cpdf_range(3,7) gives the range 3,4,5,6,7
*/

int cpdf_range(int, int);

/+ cpdf_all (pdf) is the range containing all the pages in a given document. =/
int cpdf_all(int);

/%
* cpdf_even (range) makes a range which contains Jjust the even pages of
* another range.
*/

int cpdf_even (int);

/%

* cpdf_odd(range) makes a range which contains just the odd pages of another

Chapter 1. Basic Usage 15

* range.
*/
int cpdf_odd(int);

/ *

* cpdf_rangeUnion(a, b) makes the union of two ranges giving a range
*+ containing the pages in range a and range b.

*/

int cpdf_rangeUnion (int, int);

/ *

* cpdf_difference(a, b) makes the difference of two ranges, giving a range
% containing all the pages in a except for those which are also in b.

*/

int cpdf_difference(int, int);

/* cpdf_removeDuplicates (range) deduplicates a range, making a new one. x/
int cpdf_removeDuplicates (int);

/* cpdf_rangelLength gives the number of pages in a range. =/
int cpdf_rangelength (int);

/ *

* cpdf_rangeGet (range, n) gets the page number at position n in a range,
* where n runs from 0 to rangelength - 1.

*/

int cpdf_rangeGet (int, int);

/ *

* cpdf_rangeAdd(range, page) adds the page to a range, if it is not already
* there.

*/

int cpdf_rangeAdd(int, int);

/ *
* cpdf_isInRange (range, page) returns true if the page is in the range,
* false otherwise.

*/

int cpdf_isInRange (int, int);

/* cpdf_pages (pdf) returns the number of pages in a PDF. =/
int cpdf_pages (int);

/ *

+ cpdf_pagesFast (password, filename) returns the number of pages in a given
* PDF, with given user encryption password. It tries to do this as fast as
* possible, without loading the whole file.

*/

int cpdf_pagesFast (const char[], const char[]);

/ *

16 Chapter 1. Basic Usage

* cpdf_toFile (pdf, filename, linearize, make_id) writes the file to a given
%+ filename. If linearize is true, it will be linearized if a linearizer is

* available. If make_id is true, it will be given a new ID.

x/

void cpdf_toFile(int, const char[], int, int);

cpdf_toFileExt (pdf, filename, linearize, make_id, preserve_objstm,
generate_objstm, compress_objstm) writes the file to a given filename. If
make_id is true, it will be given a new ID. If preserve_objstm is true,
existing object streams will be preserved. If generate_objstm is true,
object streams will be generated even if not originally present. If
compress_objstm is true, object streams will be compressed (what we
usually want). WARNING: the pdf argument will be invalid after this call,
and should be discarded.

* % o ok X ok X %

*

x/
void cpdf_toFileExt (int, const char([], int, int, int, int, int);

/*
* cpdf_toFileMemory (pdf, linearize, make_id, &length) writes a PDF file it
* and returns the buffer. The buffer length is filled in &length.
x/

void xcpdf_toMemory (int, int, int, int «);

/*
* cpdf_isEncrypted(pdf) returns true if a documented is encrypted, false
* otherwise.
*/

int cpdf_isEncrypted(int);

/*
* cpdf_decryptPdf (pdf, userpw) attempts to decrypt a PDF using the given
* user password. The error code is non-zero if the decryption fails.
*/

void cpdf_decryptPdf (int, const char([]);

/*
* cpdf_decryptPdfOwner (pdf, ownerpw) attempts to decrypt a PDF using the
* given owner password. The error code is non-zero if the decryption fails.
*/

void cpdf_decryptPdfOwner (int, const char([]);

/*
* File permissions. These are inverted, in the sense that the presence of
* one of them indicates a restriction.

x/

enum cpdf_permission {
cpdf_noEdit, /* Cannot edit the document =*/
cpdf_noPrint, /* Cannot print the document =/
cpdf_noCopy, /+ Cannot copy the document =*/

cpdf_noAnnot, /* Cannot annotate the document =/

Chapter 1. Basic Usage 17

cpdf_noForms, /* Cannot edit forms in the document x/
cpdf_noExtract, /* Cannot extract information x/
cpdf_noAssemble, /* Cannot assemble into a bigger document =/
cpdf_noHgPrint /* Cannot print high quality =/

i

/ *
* Encryption methods. Suffixes 'false' and 'true' indicates lack of or
* presence of encryption for XMP metadata streams.

*/
enum cpdf_encryptionMethod {
cpdf_pdf40bit, /* 40 bit RC4 encryption =/
cpdf_pdfl28bit, /+ 128 bit RC4 encryption =/
cpdf_aesl28bitfalse, /+ 128 bit AES encryption, do not encrypt
* metadata. x/
cpdf_aesl28bittrue, /+ 128 bit AES encryption, encrypt metadata =/
cpdf_aes256bitfalse, /+ Deprecated. Do not use for new files =/
cpdf_aes256bittrue, /+ Deprecated. Do not use for new files =/

cpdf_aes256bitisofalse, /* 256 bit AES encryption, do not encrypt
* metadata. */
cpdf_aes256bitisotrue /+ 256 bit AES encryption, encrypt metadata =/
}i

/ *
* cpdf_toFileEncrypted(pdf, encryption_method, permissions,
* permission_length, owner_password, user password, linearize, makeid,
* filename) writes a file as encrypted.

x/
void cpdf_toFileEncrypted(int, int, int *, int, const char[], const char[], int,
int, const charl[]);
/ *

* cpdf_toFileEncryptedExt (pdf, encryption_method, permissions,
* permission_length, owner_password, user_password, linearize, makeid,
* preserve_objstm, generate_objstm, compress_objstm, filename) WARNING: the
* pdf argument will be invalid after this call, and should be discarded.
*/
void cpdf_toFileEncryptedExt (int, int, int %, int, const char[], const charl],
int, int, int, int, int, const char[]);

/ *

* cpdf_hasPermission (pdf, permission) returns true if the given permission
* (restriction) 1is present.

*/

int cpdf_hasPermission(int, enum cpdf_permission);

/ *
* cpdf_encryptionKind (pdf) return the encryption method currently in use on
* a document.
*/

enum cpdf_encryptionMethod cpdf_encryptionKind (int);

18

Chapter 1. Basic Usage

Chapter 2

Merging and Splitting

cpdf -merge inl.pdf [<range>] in2.pdf [<range>] [<more names/ranges>]
[-collate] [-retain-numbering] [-remove-duplicate-fonts]
[-merge—-add-bookmarks [-merge-add-bookmarks-use-titles]]
-o out.pdf

cpdf -split in.pdf -o <format> [-chunk <chunksize>]

cpdf -split-bookmarks <level> in.pdf -o <format>

2.1 Merging

The -merge operation allow the merging of several files into one. Ranges can be used to
select only a subset of pages from each input file in the output. The output file consists of the
concatenation of all the input pages in the order specified on the command line. Actually, the
-merge can be omitted, since this is the default operation of cpdf.

cpdf -merge a.pdf 1 b.pdf 2-end -o out.pdf

Take page one of a.pdf and all but the first page of b . pdf, merge them and produce out . pdf.
cpdf -merge -idir files -o out.pdf

Merge all files from directory £iles, producing out . pdf.

Merge maintains bookmarks, named destinations, and name dictionaries.
PDF features which cannot be merged are retained if they are from the document which first
exhibits that feature.

19

20 Chapter 2. Merging and Splitting

The ~collate option collates pages: that is to say, it takes the first page from the first
document and its range, then the first page from the second document and its range and so on.
When all first pages have been taken, it begins on the second from each range, and so on.

The -retain-numbering option keeps the PDF page numbering labels of each document
intact, rather than renumbering the output pages from 1.

The ~remove-duplicate-fonts option ensures that fonts used in more than one of the
inputs only appear once in the output.

The -merge-add-bookmarks option adds a top-level bookmark for each file, using the
filename. Any existing bookmarks are retained. The -merge-add-bookmarks-use-titles,
when used in conjunction with ~-merge-add-bookmarks, will use the title from each PDF’s
metadata instead of the filename.

2.2 Splitting

The -split operation splits a PDF file into a number of parts which are written to file, their
names being generated from a format. The optional —~chunk option allows the number of pages
written to each output file to be set.

cpdf -split a.pdf -o out%%%.pdf
Split a . pdf to the files out 001 .pdf, out 002 .pdf etc.
cpdf a.pdf even AND -split —-chunk 10 -o dir/out%%%.pdf

Split the even pages of a . pdf to the files out 001 . pdf, out 002 . pdf etc. with at most ten pages in
each file. The directory (folder) dir must exist.

If the output format does not provide enough numbers for the files generated, the result is
unspecified. The following format operators may be used:

s , %%% etc. Sequence number padded to the number of percent signs
@F Original filename without extension
@N Sequence number without padding zeroes
@s Start page of this chunk
QE End page of this chunk

@B Bookmark name at this page

Numbers padded to a fixed width field by zeroes may be obtained for @S and @E by following
them with more @ signs e.g @REQQQ for a fixed width of three.

2.3 Splitting on Bookmarks

The -split-bookmarks <level> operation splits a PDF file into a number of parts, accord-
ing to the page ranges implied by the document’s bookmarks. These parts are then written to
file with names generated from the given format.

Level 0 denotes the top-level bookmarks, level 1 the next level (sub-bookmarks) and so on.
So -split-bookmarks 1 creates breaks on level 0 and level 1 boundaries.

Chapter 2. Merging and Splitting 21

cpdf -split-bookmarks 0 a.pdf -o out%$%%.pdf

Split a . pdf to the files out 001 .pdf, out 002 . pdf on bookmark boundaries.

Now, there may be many bookmarks on a single page (for instance, if paragraphs are book-
marked or there are two subsections on one page). The splits calculated by ~split-bookmarks
ensure that each page appears in only one of the output files. It is possible to use the @ operators
above, including operator @B which expands to the text of the bookmark:

cpdf -split-bookmarks 0 a.pdf -o @B.pdf

Split a . pdf on bookmark boundaries, using the bookmark text as the filename.

The bookmark text used for a name is converted from unicode to 7 bit ASCII, and the following
characters are removed, in addition to any character with ASCII code less than 32:

/0?7 <>\ 1 ox L

2.4 Encrypting with Split and Split Bookmarks

The encryption parameters described in Chapter 4 may be added to the command line to
encrypt each split PDF. Similarly, the ~recrypt switch described in Chapter 1 may by given to
re-encrypt each file with the existing encryption of the source PDE.

C Interface

/* CHAPTER 2. Merging and Splitting =/

/ *

* cpdf_mergeSimple (pdfs, length) given an array of PDFs, and its length,
* merges the files into a new one, which is returned.

*/

int cpdf_mergeSimple (int %, int);

/ *

* cpdf_merge (pdfs, len, retain_numbering, remove_duplicate_fonts) merges the
* PDFs. If retain_numbering is true page labels are not rewritten. If

* remove_duplicate_fonts is true, duplicate fonts are merged. This is useful
* when the source documents for merging originate from the same source.

*/

int cpdf_merge(int %, int, int, int);

cpdf_mergeSame (pdfs, len, retain_numbering, remove_duplicate_fonts,
ranges) is the same as cpdf_merge, except that it has an additional
argument - an array of page ranges. This is used to select the pages to
pick from each PDF. This avoids duplication of information when multiple
* discrete parts of a source PDF are included.

*/

int cpdf_mergeSame (int x, int, int, int, int *);

* % ok X %

/%
* cpdf_selectPages (pdf, range) returns a new document which just those pages
* in the page range.
*/

int cpdf_selectPages (int, int);

Chapter 3

Pages

cpdf -scale-page "<scale x> <scale y>" [-fast] in.pdf [<range>] -o out.pdf

cpdf -scale-to-fit "<x size> <y size>" [-fast]
[-scale-to-fit—-scale <scale>]
in.pdf [<range>] -o out.pdf

cpdf -scale-contents [<scale>] [<position>] [-fast]
in.pdf [<range>] -o out.pdf

cpdf -shift "<shift x> <shift y>" [-fast] in.pdf [<range>] -o out.pdf
cpdf -rotate <angle> in.pdf [<range>] -o out.pdf

cpdf -rotateby <angle> in.pdf [<range>] -o out.pdf

cpdf -upright [-fast] in.pdf [<range>] -o out.pdf

cpdf -rotate-contents <angle> [-fast] in.pdf [<range>] -o out.pdf
cpdf -hflip [-fast] in.pdf [<range>] -o out.pdf

cpdf -vflip [-fast] in.pdf [<range>] -o out.pdf

cpdf -mediabox "<x> <y> <w> <h>" in.pdf [<range>] -o out.pdf

cpdf —-cropbox "<x> <y> <w> <h>" in.pdf [<range>] -o out.pdf

cpdf -remove-cropbox in.pdf [<range>] -o out.pdf

(Also bleed, art, and trim versions of these two commands, for example -artbox,
-remove-trimbox)

cpdf —-frombox <boxname> -tobox <boxname> [-mediabox-if-missing]
in.pdf [<range>] -o out.pdf

cpdf -hard-box <boxname> [-fast] in.pdf [<range>]
[-mediabox-if-missing] -o out.pdf

cpdf -show-boxes [-fast] in.pdf [<range>] -o out.pdf

cpdf —-trim-marks [-fast] in.pdf [<range>] -o out.pdf

23

24 Chapter 3. Pages

3.1 Page Sizes

Any time when a page size is required, instead of writing, for instance "210mm 197mm" one
can instead write adportrait. Here is a list of supported page sizes:

alOportrait alportrait azportrait
a3portrait adportrait abportrait
abportrait a7portrait a8portrait
a9portrait alOportrait

allandscape allandscape azlandscape
a3landscape a4landscape ab5landscape
ablandscape a7landscape aB8landscape
a%9landscape alOlandscape

usletterportrait usletterlandscape
uslegalportrait uslegallandscape

3.2 Scale Pages

The ~scale-page operation scales each page in the range by the X and Y factors given. This
scales both the page contents, and the page size itself. It also scales any Crop Box and other
boxes (Art Box, Trim Box etc). As with several of these commands, remember to take into
account any page rotation when considering what the X and Y axes relate to.

cpdf -scale-page "2 2" in.pdf -o out.pdf

Convert an A4 page to A3, for instance.

The ~scale-to-fit operation scales each page in the range to fit a given page size, preserving
aspect ratio and centering the result.

cpdf -scale-to-fit "297mm 210mm" in.pdf -o out.pdf
cpdf -scale-to-fit adportrait in.pdf -o out.pdf

Scale a file’s pages to fit A4 portrait.

The scale can optionally be set to a percentage of the available area, instead of filling it.

cpdf -scale-to-fit adportrait -scale-to-fit-scale 0.9 in.pdf -o out.pdf

Scale a file’s pages to fit A4 portrait, scaling the page 90% of its possible size.

NB: -scale-to-fit operates with respect to the media box not the crop box. If necessary, set
the media box to be equal to the crop box first. In addition, ~scale-to-£fit presently requires

Chapter 3. Pages 25

that the origin of the media box be (0, 0). This can be assured by preprocessing with ~upright
(described elsewhere in this chapter).

The -scale-contents operation scales the contents about the center of the crop box (or,
if absent, the media box), leaving the page dimensions (boxes) unchanged.

cpdf -scale-contents 0.5 in.pdf -o out.pdf

Scale a file’s contents on all pages to 50% of its original dimensions.

To scale about a point other than the center, one can use the positioning commands described in
Section 8.2.4. For example:

cpdf -scale-contents 0.5 —-topright 20 in.pdf -o out.pdf

Scale a file’s contents on all pages to 50% of its original dimensions about a point 20pts from its top
right corner.

3.3 Shift Page Contents

The -shift operation shifts the contents of each page in the range by X points horizontally
and Y points vertically.

cpdf -shift "50 0" in.pdf even -o out.pdf

Shift pages to the right by 50 points (for instance, to increase the binding margin).

3.4 Rotating Pages

There are two ways of rotating pages: (1) setting a value in the PDF file which asks the viewer
(e.g. Acrobat) to rotate the page on-the-fly when viewing it (use ~rotate or —~rotateby) and
(2) actually rotating the page contents and/or the page dimensions (use ~upright (described
elsewhere in this chapter) afterwards or ~rotate-contents to just rotate the page contents).

The possible values for ~-rotate and —rotate-by are 0, 90, 180 and 270, all interpreted as
being clockwise. Any value may be used for ~-rotate-contents.

The —~rotate operation sets the viewing rotation of the selected pages to the absolute value
given.

cpdf -rotate 90 in.pdf -o out.pdf

Set the rotation of all the pages in the input file to ninety degrees clockwise.

The -rotateby operation changes the viewing rotation of all the given pages by the relative
value given.

26 Chapter 3. Pages

cpdf -rotateby 90 in.pdf -o out.pdf

Rotate all the pages in the input file by ninety degrees clockwise.

The -rotate-contents operation rotates the contents and dimensions of the page by the
given relative value.

cpdf -rotate-contents 90 in.pdf -o out.pdf

Rotate all the page contents in the input file by ninety degrees clockwise. Does not change the page
dimensions.

The —upright operation does whatever combination of ~rotate and -rotate-contents
is required to change the rotation of the document to zero without altering its appearance. In
addition, it makes sure the media box has its origin at (0,0), changing other boxes to compensate.
This is important because some operations in CPDF (such as scale-to-fit), and in other PDE-
processing programs, work properly only when the origin is (0, 0).

cpdf -upright in.pdf -o out.pdf

Make pages upright.

3.5 Flipping Pages

The -hflip and -vflip operations flip the contents of the chosen pages horizontally or
vertically. No account is taken of the current page rotation when considering what “horizontally”
and “vertically” mean, so you may like to use —~upright (see above) first.

cpdf -hflip in.pdf even -o out.pdf
Flip the even pages in in.pdf horizontally.
cpdf -vflip in.pdf -o out.pdf

Flip all the pages in in.pdf vertically.

3.6 Boxes and Cropping

All PDF files contain a media box for each page, giving the dimensions of the paper. To change
these dimensions (without altering the page contents in any way), use the -mediabox opera-
tion.

Chapter 3. Pages 27

cpdf -mediabox "Opt Opt 500pt 500pt" in.pdf -o out.pdf

Set the media box to 500 points square.

The four numbers are minimum x, minimum y, width, height. x coordinates increase to the
right, y coordinates increase upwards. PDF file can also optionally contain a crop box for each
page, defining to what extent the page is cropped before being displayed or printed. A crop box
can be set, changed and removed, without affecting the underlying media box. To set or change
the crop box use —cropbox. To remove any existing crop box, use ~remove-cropbox.

cpdf —-cropbox "Opt Opt 200mm 200mm" in.pdf -o out.pdf
Crop pages to the bottom left 200-millimeter square of the page.
cpdf -remove-cropbox in.pdf -o out.pdf

Remove cropping.

Note that the crop box is only obeyed in some viewers. Similar operations are available for the
bleed, art, and trim boxes (-art, ~-remove-bleed etc.)

cpdf -frombox <boxname> -tobox <boxname> [-mediabox-if-missing]
in.pdf [<range>] -o out.pdf

Copy the contents of one box to another.

This operation copies the contents of one box (Media box, Crop box, Trim box etc.) to another. If
-mediabox-if-missing is added, the media box will be substituted when the "from’ box is
not set for a given page. For example

cpdf —-frombox /TrimBox —-tobox /CropBox in.pdf -o out.pdf

copies the Trim Box of each page to the Crop Box of each page. The possible boxes are
/MediaBox, /CropBox, /BleedBox, /TrimBox, /ArtBox.

A hard box (one which clips its contents by inserting a clipping rectangle) may be created
with the ~hard-box operation:

cpdf -hard-box /TrimBox in.pdf -o out.pdf

This means the resultant file may be used as a stamp without contents outside the given box
reappearing. The -mediabox-1if-missing option may also be used here.

28 Chapter 3. Pages

3.7 Showing Boxes and Printer’s Marks

The -show-boxes operation displays the boxes present on each page as method of debugging.
Since boxes may be coincident, they are shown in differing colours and dash patterns so they
may be identified even where they overlap. The colours are:

Media box Red
Cropbox Green
Art box Blue
Trimbox Orange
Bleed box Pink

The -t rim-marks operation adds trim marks to a PDF file. The trim box must be present.

Chapter 3. Pages 29

C Interface

/+ CHAPTER 3. Pages «/

/ *

* cpdf_scalePages (pdf, range, x scale, y scale) scales the page dimensions
* and content by the given scale, about (0, 0). Other boxes (crop etc. are
* altered as appropriate)

*/

void cpdf_scalePages(int, int, double, double);

/ *
* cpdf_scaleToFit (pdf, range, width, height, scale) scales the content to fit
* new page dimensions (width x height) multiplied by scale (typically 1.0).
* Other boxed (crop etc. are altered as appropriate)
x/
void cpdf_scaleToFit (int, int, double, double, double);

/ *

* cpdf_scaleToFitPaper (pdf, range, papersize, scale) scales the page content
* to fit the given page size, possibly multiplied by scale (typically 1.0)
*/

void cpdf_scaleToFitPaper (int, int, enum cpdf_papersize, double);

/* Positions on the page. Used for scaling about a point, and adding text. =/
enum cpdf_anchor {

cpdf_posCentre, /+ Absolute centre x/

cpdf_posLeft, /+ Absolute left =/

cpdf_posRight, /* Absolute right =/

cpdf_top, /+ Top top centre of the page */

cpdf_topLeft, /+ The top left of the page */

cpdf_topRight, /+ The top right of the page =/

cpdf_left, /* The left hand side of the page, halfway
* down *x/

cpdf_bottomLeft, /+ The bottom left of the page =*/

cpdf_bottom, /+ The bottom middle of the page =/

cpdf_bottomRight, /+ The bottom right of the page =*/

cpdf_right, /+ The right hand side of the page, halfway
x down */

cpdf_diagonal, /+ Diagonal, bottom left to top right =*/

cpdf_reverseDiagonal /x Diagonal, top left to bottom right =*/

A cpdf_position is an anchor (above) and zero or one or two parameters
(cpdf_coordl, cpdf_coord2).

cpdf_posCentre: Two parameters, x and y

* % o ok X ok X

cpdf_posLeft: Two parameters, x and y

O8]
o

Chapter 3. Pages

cpdf_posRight: Two parameters, x and y

cpdf_top: One parameter -- distance from top

cpdf_topLeft: One parameter —-- distance from top left
cpdf_topRight: One parameter —-- distance from top right
cpdf_left: One parameter —-- distance from left middle
cpdf_bottomLeft: One parameter —-- distance from bottom left
cpdf_bottom: One parameter —-- distance from bottom
cpdf_bottomRight: One parameter -- distance from bottom right
cpdf_right: One parameter -- distance from right

cpdf_diagonal: Zero parameters

LR T SR T S N S S S S N S N S T S ST

*

cpdf_reverseDiagonal: Zero parameters

*/
struct cpdf_position {
int cpdf_anchor; /* Position anchor =/

double cpdf_coordl; /x Parameter one =/
double cpdf_coord2; /x Parameter two =*/
bi

/*
* cpdf_scaleContents (pdf, range, position, scale) scales the contents of the
* pages in the range about the point given by the cpdf_position, by the
* scale given.
*/
void cpdf_scaleContents (int, int, struct cpdf_position, double);

/*
* cpdf_shiftContents (pdf, range, dx, dy) shifts the content of the pages in
* the range.
*/

void cpdf_shiftContents (int, int, double, double);

/*
* cpdf_rotate (pdf, range, rotation) changes the viewing rotation to an
* absolute value. Appropriate rotations are 0, 90, 180, 270.
*/

void cpdf_rotate(int, int, int);

/%
* cpdf_rotateBy (pdf, range, rotation) changes the viewing rotation by a
* given number of degrees. Appropriate values are 90, 180, 270.

Chapter 3. Pages 31

x/
void cpdf_rotateBy(int, int, int);

/ *

* cpdf_rotateContents (pdf, range, angle) rotates the content about the
* centre of the page by the given number of degrees, in a clockwise

* direction.

*/

void cpdf_rotateContents (int, int, double);

/ *
* cpdf_upright (pdf, range) changes the viewing rotation of the pages in the
* range, counter-rotating the dimensions and content such that there is no
* visual change.
*/

void cpdf_upright (int, int);

/* cpdf_hFlip(pdf, range) flips horizontally the pages in the range. */
void cpdf_hFlip(int, int);

/* cpdf_vFlip(pdf, range) flips vertically the pages in the range. =/
void cpdf_vFlip(int, int);

/ *
* cpdf_crop(pdf, range, x, vy, w, h) crops a page, replacing any existing
* crop box. The dimensions are in points.
*/

void cpdf_crop(int, int, double, double, double, double);

/* cpdf_removeCrop (pdf, range) removes any crop box from pages in the range. x/
void cpdf_removeCrop (int, int);

/* cpdf_removeTrim (pdf, range) removes any crop box from pages in the range. x/
void cpdf_removeTrim(int, int);

/* cpdf_removeArt (pdf, range) removes any crop box from pages in the range. x/
void cpdf_removeArt (int, int);

/* cpdf_removeBleed (pdf, range) removes any crop box from pages in the range. */
void cpdf_removeBleed (int, int);

/ *

* cpdf_trimMarks (pdf, range) adds trim marks to the given pages, if the
* trimbox exists.

*/

void cpdf_trimMarks (int, int);

/* cpdf_showBoxes (pdf, range) shows the boxes on the given pages, for debug. =/
void cpdf_showBoxes (int, int);

/* cpdf_hardBox make a given box a 'hard box' i.e clips it explicitly. =*/

32 Chapter 3. Pages

void cpdf_hardBox (int, int, const charl[]);

Chapter 4

Encryption and Decryption

cpdf —-encrypt <method> [-pw=]<owner> [-pw=]<user>
[-no-encrypt-metadata] <permissions> in.pdf -o out.pdf

cpdf -decrypt [-decrypt-force] in.pdf owner=<owner password> -o out.pdf

4.1 Introduction

PDF files can be encrypted using various types of encryption and attaching various permissions
describing what someone can do with a particular document (for instance, printing it or
extracting content). There are two types of person:

The User can do to the document what is allowed in the permissions.

The Owner can do anything, including altering the permissions or removing encryption
entirely.

There are five kinds of encryption:

* 40-bit encryption (method 40bit) in Acrobat 3 (PDF 1.1) and above

128-bit encryption (method 128bit) in Acrobat 5 (PDF 1.4) and above

128-bit AES encryption (method AES) in Acrobat 7 (PDF 1.6) and above

256-bit AES encryption (method AES256) in Acrobat 9 (PDF 1.7) — this is deprecated — do
not use for new documents

256-bit AES encryption (method AES256150) in PDF 2.0

All encryption supports these kinds of permissions:

-no-edit Cannot change the document

-no-print Cannot print the document

-no-copy Cannot select or copy text or graphics
-no-annot Cannot add or change form fields or annotations

33

34 Chapter 4. Encryption and Decryption

In addition, 128-bit encryption (Acrobat 5 and above) and AES encryption supports these:

-no-forms Cannot edit form fields
-no-extract Cannot extract text or graphics
-no-assemble Cannot merge files etc.
-no-hg-print Cannot print high-quality

Add these options to the command line to prevent each operation.

4.2 Encrypting a Document

To encrypt a document, the owner and user passwords must be given (here, fred and charles
respectively):

cpdf —-encrypt 40bit fred charles -no-print in.pdf -o out.pdf
cpdf —-encrypt 128bit fred charles -no-extract in.pdf -o out.pdf
cpdf -encrypt AES fred "" -no-edit -no-copy in.pdf -o out.pdf

A blank user password is common. In this event, PDF viewers will typically not prompt for a
password for when opening the file or for operations allowable with the user password.

cpdf -encrypt AES256 fred "" -no-forms in.pdf -o out.pdf

In addition, the usual method can be used to give the existing owner password, if the document
is already encrypted.

The optional -pw= preface may be given where a password might begin with a - and thus
be confused with a command line option.

When using AES encryption, the option is available to refrain from encrypting the metadata.
Add -no-encrypt-metadata to the command line.

4.3 Decrypting a Document

To decrypt a document, the owner password is provided.

cpdf —-decrypt in.pdf owner=fred -o out.pdf

The user password cannot decrypt a file.
When appropriate passwords are not available, the option —~decrypt-force may be added
to the command line to process the file regardless.

Chapter 4. Encryption and Decryption

C Interface

/% CHAPTER 4. Encryption =/

/* Encryption covered under Chapter 1 in cpdflib.

*/

35

36

Chapter 4. Encryption and Decryption

Chapter 5

Compression

cpdf -decompress in.pdf -o out.pdf
cpdf -compress in.pdf -o out.pdf

cpdf -squeeze in.pdf [-squeeze-log-to <filename>]
[-squeeze—no-recompress] [—-squeeze—-no-page—-data] -o out.pdf

cpdf provides basic facilities for decompressing and compressing PDF streams, and for repro-
cessing the whole file to ‘squeeze’ it.

5.1 Decompressing a Document

To decompress the streams in a PDF file, for instance to manually inspect the PDF, use:

cpdf -decompress in.pdf -o out.pdf

If cpdf finds a compression type it can’t cope with, the stream is left compressed. When using
—decompress, object streams are not compressed. It may be easier for manual inspection to
also remove object streams, by adding the ~-no-preserve-objstm option to the command.

5.2 Compressing a Document

To compress the streams in a PDF file, use:

cpdf -compress in.pdf -o out.pdf

cpdf compresses any streams which have no compression using the FlateDecode method, with
the exception of Metadata streams, which are left uncompressed.

37

38 Chapter 5. Compression

5.3 Squeezing a Document

To squeeze a PDF file, reducing its size by an average of about twenty percent (though sometimes
not at all), use:

cpdf -squeeze in.pdf -o out.pdf

Adding -squeeze to the command line when using another operation will squeeze the file or
files upon output.

The -squeeze operation writes some information about the squeezing process to standard
output. The squeezing process involves several processes which losslessly attempt to reduce
the file size. It is slow, so should not be used without thought.

$./cpdf -squeeze in.pdf -o out.pdf

Initial file size is 238169 bytes

Beginning squeeze: 123847 objects

Squeezing... Down to 114860 objects

Squeezing... Down to 114842 objects

Squeezing page data

Recompressing document

Final file size is 187200 bytes, 78.60% of original.

The -squeeze-log-to <filename> option writes the log to the given file instead of to
standard output. Log contents is appended to the end of the log file, preserving existing
contents.

There are two options which turn off parts of the squeezer. They are -squeeze-no-recompress
for avoiding the reprocessing of malformed compressed sections, and ~squeeze-no-page-data
for avoiding the reprocessing of malformed page data.

Chapter 5. Compression 39

C Interface

/* CHAPTER 5. Compression =x/

/ *

* cpdf_compress (pdf) compresses any uncompressed streams in the given PDF
* using the Flate algorithm.

*/

void cpdf_compress (int);

/ *

* cpdf_decompress (pdf) decompresses any streams in the given PDF, so long as
* the compression method is supported.

*/

void cpdf_decompress (int);

/* cpdf_squeezeToMemory (pdf) squeezes a pdf in memory. =x/
void cpdf_squeezelInMemory (int) ;

40

Chapter 5. Compression

Chapter 6

Bookmarks

cpdf -list-bookmarks [-utf8 | -raw] in.pdf

cpdf -list-bookmarks-json in.pdf

cpdf -remove-bookmarks in.pdf -o out.pdf

cpdf -add-bookmarks <bookmark file> in.pdf -o out.pdf

cpdf -add-bookmarks—json <bookmark file> in.pdf -o out.pdf
cpdf -bookmarks-open-to-level <n> in.pdf -o out.pdf

cpdf -table-of-contents [-toc-title] [-toc-no-bookmark]
[-font] [-font-size <size>] in.pdf -o out.pdf

PDF bookmarks (properly called the document outline) represent a tree of references to parts of
the file, typically displayed at the side of the screen. The user can click on one to move to the
specified place. cpdf provides facilities to list, add, and remove bookmarks. The format used
by the list and add operations is the same, so you can feed the output of one into the other, for
instance to copy bookmarks.

6.1 List Bookmarks

The -1ist-bookmarks operation prints (to standard output) the bookmarks in a file. The
first column gives the level of the tree at which a particular bookmark is. Then the text of the
bookmark in quotes. Then the page number which the bookmark points to. Then (optionally)
the word “open” if the bookmark should have its children (at the level immediately below)
visible when the file is loaded. Then the destination (see below). For example, upon executing

cpdf -list-bookmarks doc.pdf

the result might be:

41

42 Chapter 6. Bookmarks

0 "Part 1" 1 open

1 "Part 1A"™ 2 "[2 /XYZ 200 400 null]l"
1 "Part 1B" 3

0 "Part 2" 4

1 "Part 2a" 5

If the page number is 0, it indicates that clicking on that entry doesn’t move to a page.

By default, cpdf converts unicode to ASCII text, dropping characters outside the ASCII
range. To prevent this, and return unicode UTES8 output, add the —ut £8 option to the command.
To prevent any processing, use the —raw option. See Section 1.17 for more information. A
newline in a bookmark is represented as "\n".

By using -1ist-bookmarks-json instead, the bookmarks are formatted as a JSON array,
in order, of dictionaries formatted thus:

{ "level": O,

"text": "1 Basic Usage",
"page": 17,
"open": false,
"target":
[¢ "z": 17 1},
{ "N": "/XYZ" },

{ "F": 85.039 },
{ "F": 609.307 1},
null]

See chapter 15 for more details of cpdf’s JSON formatting. Bookmark text in JSON book-
marks, however, is in UTFS for ease of use.

6.1.1 Destinations

The destination is an extended description of where the bookmark should point to (i.e it can
be more detailed than just giving the page). For example, it may point to a section heading
halfway down a page. Here are the possibilities:

Chapter 6. Bookmarks 43

Format Description

[p /XYZ left top zoom] Display page number p with (left, top) positioned
at upper-left of window and magnification of zoom.
Writing “null” for any of left, top or zoom specifies no
change. A zoom of 0 is the same as “null”.

[p /Fit] Display page number p so as to fit fully within the
window.
[p /FitH top] Display page number p with vertical coordinate top

at the top of the window and the page magnified
so its width fits the window. A null value for top
implies no change.

[p /FitV left] Display page number p with horizontal coordinate
left at the left of the window, and the page magnified
so its height fits the window. A null value for left
implies no change.

[p /FitR left bottom right top] ~ Display page number p magnified so as to fit entirely
within the rectangle specified by the other parame-
ters.

[p /FitB] As for /Fit but with the page’s bounding box (see
below).

[p /FitBH top] As for /FitH but with the page’s bounding box (see
below).

[p /FitBV left] As for /FitV but with the page’s bounding box (see
below).

The bounding box is the intersection of the page’s crop box and the bounding box of the page
contents. Some other kinds of destination may be produced by ~1ist-bookmarks. They will
be preserved by —~add-bookmarks and may be edited as your risk.

6.2 Remove Bookmarks

The ~remove-bookmarks operations removes all bookmarks from the file.

cpdf -remove-bookmarks in.pdf -o out.pdf

6.3 Add Bookmarks

The ~add-bookmarks file adds bookmarks as specified by a bookmarks file, a text file in ASCII or
UTEFS8 encoding and in the same format as that produced by the ~1ist-bookmarks operation.
If there are any bookmarks in the input PDF already, they are discarded. For example, if the file
bookmarks.txt contains the output from —-1ist-bookmarks above, then the command

cpdf -—-add-bookmarks bookmarks.txt in.pdf -o out.pdf

44 Chapter 6. Bookmarks

adds the bookmarks to the input file, writing to out .pdf. An error will be given if the
bookmarks file is not in the correct form (in particular, the numbers in the first column which
specify the level must form a proper tree with no entry being more than one greater than the
last).

Bookmarks in JSON format (see above) may be added with ~add-bookmarks-json:

cpdf —-add-bookmarks-json bookmarks.json in.pdf -o out.pdf

Remember that strings in JSON bookmark files are in UTFS, rather than as native PDF
strings.
6.4 Opening bookmarks

As an alternative to extracting a bookmark file and manipulating the open-status of bookmarks,
mass manipulation may be achieved by the following operation:

cpdf -bookmarks-open-to-level <level> in.pdf -o out.pdf

A level of 0 will close all bookmarks, level 1 will open just the top level, closing all others etc. To
open all of them, pick a sufficiently large level.

6.5 Making a Table of Contents

Cpdf can automatically generate a table of contents from existing bookmarks, adding it to the
beginning of the document.

cpdf -table-of-contents in.pdf -o out.pdf

The page(s) added will have the same dimensions, media and crop boxes as the first page of
the original file. The default title is “Table of Contents”, though this may be changed:

cpdf -table-of-contents -toc-title "Contents" in.pdf -o out.pdf

An empty title removes the title. The sequence \n may be used to split the title into lines.
The default font is 12pt Times Roman (and 24pt for the title). The base font and size may be
changed with —~font and -font-size (see chapter 8 for full details):

cpdf -table-of-contents —-font "Courier-Bold" -font-size 8
in.pdf -o out.pdf

Chapter 6. Bookmarks 45

By default, an entry for the new table of contents will be added to the document’s bookmarks.
To suppress this behaviour, add —~toc-no-bookmark:

cpdf -table-of-contents -toc-no-bookmark in.pdf -o out.pdf

C Interface

/+* CHAPTER 6. Bookmarks =*/

/*
* cpdf_startGetBookmarkInfo (pdf) start the bookmark retrieval process for a
* given PDF.
*/

void cpdf_startGetBookmarkInfo (int);

/%
* cpdf_numberBookmarks gets the number of bookmarks for the PDF given to
* cpdf_startGetBookmarkInfo.
*/

int cpdf_numberBookmarks (void) ;

/%
* cpdf_getBookmarkLevel (serial) get bookmark level for the given bookmark
* (0...(n = 1)).

*/

int cpdf_getBookmarkLevel (int) ;

/%
* cpdf_getBookmarkPage gets the bookmark target page for the given PDF
% (which must be the same as the PDF passed to cpdf_startSetBookmarkInfo)
* and bookmark (0...(n — 1)).
*/
int cpdf_getBookmarkPage (int, int);

/+ cpdf_getBookmarkText returns the text of bookmark (0...(n - 1)). */
char *cpdf_getBookmarkText (int);

/+ cpdf_getBookmarkOpenStatus (pdf) is true if the bookmark is open. =*/
int cpdf_getBookmarkOpenStatus (int) ;

/* cpdf_endGetBookmarkInfo ends the bookmark retrieval process, cleaning up. */
void cpdf_endGetBookmarkInfo (void) ;

/%
* cpdf_startGetBookmarkInfo (n) start the bookmark setting process for n
* bookmarks.
*/

void cpdf_startSetBookmarkInfo (int);

/%

* cpdf_setBookmarkLevel (n, level) set bookmark level for the given bookmark
* (0...(n - 1)).

*/

void cpdf_setBookmarkLevel (int, int);

/ *

* cpdf_setBookmarkPage (pdf, bookmark, targetpage) sets the bookmark target
* page for the given PDF (which must be the same as the PDF to be passed to
* cpdf_endSetBookmarkInfo) and bookmark (0...(n — 1)).

*/

void cpdf_setBookmarkPage (int, int, int);

/ *
* cpdf_setBookmarkOpenStatus (n, status) set the open status of a bookmark,
* true or false.
*/

void cpdf_setBookmarkOpenStatus (int, int);

/* cpdf_setBookmarkText (n, text) sets the text of bookmark (0...(n — 1)). */
void cpdf_setBookmarkText (int, const charl[]);

/ *
* cpdf_endSetBookmarkInfo (pdf) end the bookmark setting process, writing the
* bookmarks to the given PDF.
*/

void cpdf_endSetBookmarkInfo (int);

/* cpdf_getBookmarksJSON (pdf, length) returns the bookmark data and sets the
* length. =/
void *cpdf_getBookmarksJSON (int, int x);

/* cpdf_setBookmarksJSON (pdf, data, datalength) sets the bookmarks from JSON
* bookmark data. =*/
void cpdf_setBookmarksJSON (int, void =%, int);

/* cpdf_tableOfContents (pdf, font, fontsize, title, bookmark) typesets a table
* of contents from existing bookmarks and prepends it to the document. If
* bookmark is set, the table of contents gets its own bookmark. =*/

void cpdf_tableOfContents (int, int, double, const char[], int);

Chapter 7

Presentations

cpdf -presentation in.pdf [<range>] -o out.pdf
[-trans <transition—-name>] [—-duration <float>]
[-vertical] [-outward] [-direction <int>]

[-effect—-duration <float>]

The PDF file format, starting at Version 1.1, provides for simple slide-show presentations in
the manner of Microsoft Powerpoint. These can be played in Acrobat and possibly other PDF
viewers, typically started by entering full-screen mode. The —~presentation operation allows
such a presentation to be built from any PDF file.

The -trans option chooses the transition style. When a page range is used, it is the
transition from each page named which is altered. The following transition styles are available:

Split Two lines sweep across the screen, revealing the new page. By default the lines are
horizontal. Vertical lines are selected by using the —~vertical option.

Blinds Multiple lines sweep across the screen, revealing the new page. By default the lines are
horizontal. Vertical lines are selected by using the ~vertical option.

Box A rectangular box sweeps inward from the edges of the page. Use ~outward to make it
sweep from the center to the edges.

Wipe A single line sweeps across the screen from one edge to the other in a direction specified
by the ~direction option.

Dissolve The old page dissolves gradually to reveal the new one.

Glitter The same as Dissolve but the effect sweeps across the page in the direction specified by
the ~direction option.

49

50 Chapter 7. Presentations

To remove a transition style currently applied to the selected pages, omit the ~t rans option.

The —effect-duration option specifies the length of time in seconds for the transition
itself. The default value is one second.

The ~duration option specifies the maximum time in seconds that the page is displayed
before the presentation automatically advances. The default, in the absence of the ~duration
option, is for no automatic advancement.

The -direction option (for Wipe and Glitter styles only) specifies the direction of the
effect. The following values are valid:

0 Left to right
90 Bottom to top (Wipe only)
180 Right to left (Wipe only)
270 Top to bottom
315 Top-left to bottom-right (Glitter only)

For example:

cpdf -presentation in.pdf 2-end -trans Split -duration 10 -o out.pdf

The Split style, with vertical lines, and each slide staying ten seconds unless manually advanced.
The first page (being a title) does not move on automatically, and has no transition effect.

To use different options on different page ranges, run cpdf multiple times on the file using a
different page range each time.

Chapter 7. Presentations

C Interface

/* CHAPTER 7. Presentations =/

/* Not included in the library version.

*/

51

52

Chapter 7. Presentations

Chapter 8

Watermarks and Stamps

cpdf -stamp-on source.pdf
[-scale-stamp-to-fit] [<positioning command>] [-relative-to-cropbox]
in.pdf [<range>] [-fast] -o out.pdf

cpdf -stamp-under source.pdf
[-scale-stamp-to-fit] [<positioning command>] [-relative-to-cropbox]
in.pdf [<range>] [-fast] -o out.pdf

cpdf -combine-pages over.pdf under.pdf

[-fast] [-prerotate] [-no-warn-rotate] -o out.pdf
cpdf ([-add-text <text-format> | -add-rectangle <size>])
[-font <fontname>] [-font-size <size-in-points>]

—color <color>] —line-spacing <number>]

—outline] —linewidth <number>]
—underneath] -relative-to-cropbox]

-bates <number>] —-bates—-at-range <number>]
—-bates-pad-to <number>] —opacity <number>]
-midline] —-topline]

—fast]

in.pdf [<range>] -o out.pdf

[
[
[
—prerotate] [-no—warn-rotate]
[
[
[

[
[
[
[
[
[
[
[

See also positioning commands below.

cpdf -remove-text in.pdf [<range>] -o out.pdf

cpdf -prepend-content <content> in.pdf [<range>] -o out.pdf
cpdf -postpend-content <content> in.pdf [<range>] -o out.pdf
cpdf -stamp-as—-xobject stamp.pdf in.pdf [<range>] -o out.pdf

NB: See discussion of —fast in Section 1.13.

53

54 Chapter 8. Watermarks and Stamps

8.1 Add a Watermark or Logo

The -stamp-on and -stamp-under operations stamp the first page of a source PDF onto or
under each page in the given range of the input file. For example,

cpdf —-stamp-on logo.pdf in.pdf odd -o out.pdf

stamps the file logo . pdf onto the odd pages of in.pdf, writing to out . pdf. A watermark
should go underneath each page:

cpdf -stamp-under topsecret.pdf in.pdf -o out.pdf

The position commands in Section 8.2.4 can be used to locate the stamp more precisely (they are
calculated relative to the crop box of the stamp). Or, preprocess the stamp with —shift first.

The —scale-stamp-to-fit option can be added to scale the stamp to fit the page before
applying it. The use of positioning commands together with ~scale-stamp-to-£fit isnot
recommended.

The —~combine-pages operation takes two PDF files and stamps each page of one over
each page of the other. The length of the output is the same as the length of the “under” file.
For instance:

cpdf -combine-pages over.pdf under.pdf -o out.pdf

Page attributes (such as the display rotation) are taken from the “under” file. For best results,
remove any rotation differences in the two files using —upright (see above) first.

The -relative-to-cropbox option takes the positioning command to be relative to the crop
box of each page rather than the media box.

8.2 Stamp Text, Dates and Times.

The —add-text operation allows text, dates and times to be stamped over one or more pages
of the input at a given position and using a given font, font size and color.

cpdf —-add-text "Copyright 2014 ACME Corp." in.pdf -o out.pdf

The default is black 12pt Times New Roman text in the top left of each page. The text can be
placed underneath rather than over the page by adding the ~underneath option.
Text previously added by cpdf may be removed by the —~remove-text operation.

cpdf -remove-text in.pdf -o out.pdf

Chapter 8. Watermarks and Stamps 55

8.2.1 Page Numbers

There are various special codes to include the page number in the text:

$Page Page number in arabic notation (1, 2, 3...)

$PageDiv2 Page number in arabic notation divided by two
$roman Page number in lower-case roman notation (i, ii, iii. . .)
$Roman Page number in upper-case roman notation (I, IL, III... .
$EndPage Last page of document in arabic notation

$Label The page label of the page

$EndLabel The page label of the last page
$filename The full file name of the input document

For example, the format "Page %Page of %EndPage" might become "Page 5 of 17”.
NB: In some circumstances (e.g in batch files) on Microsoft Windows, % is a special character,
and must be escaped (written as $%). Consult your local documentation for details.

8.2.2 Date and Time Formats

%a Abbreviated weekday name (Sun, Mon etc.)
%A Full weekday name (Sunday, Monday etc.)
$b Abbreviated month name (Jan, Feb etc.)
$B Full month name (January, February etc.)
$d Day of the month (01-31)

%$e Day of the month (1-31)

$H Hour in 24-hour clock (00-23)

%I Hour in 12-hour clock (01-12)

%3 Day of the year (001-366)

$m Month of the year (01-12)

$M Minute of the hour (00-59)

$p “am” or “p.m”

%S Second of the minute (00-61)

$T Same as %H:%M:%S

oo
o

Weekday (1-7, 1 = Sunday)
Weekday (0-6, 0 = Sunday)
Year (0000-9999)
The % character.

o° oe
=<o=

o\
o

8.2.3 Bates Numbers

Unique page identifiers can be specified by putting $Bates in the format. The starting point
can be set with the ~bates option. For example:

cpdf —-add-text "Page ID: %$Bates" -bates 23745 in.pdf -o out.pdf

To specify that bates numbering begins at the first page of the range, use -bates-at-range
instead. This option must be specified after the range is specified. To pad the bates number

56 Chapter 8. Watermarks and Stamps

up to a given number of leading zeros, use ~bates-pad-to in addition to either -bates or
-bates-at-range.

8.2.4 Position

The position of the text may be specified either in absolute terms:

-pos—-center "200 200"

Position the center of the baseline text at (200pt, 200pt)
-pos—-left "200 200"

Position the left of the baseline of the text at (200pt, 200pt)
—-pos—right "200 200"

Position the right of the baseline of the text at (200pt, 200pt)

Positions relative to certain common points can be set:

-top 10 Center of baseline 10 pts down from the top center
-topleft 10 Left of baseline 10 pts down and in from top left
~topright 10 Right of baseline 10 pts down and left from top right
-left 10 Left of baseline 10 pts in from center left
-bottomleft 10 Left of baseline 10 pts in and up from bottom left
-bottom 10 Center of baseline 10 pts up from bottom center
-bottomright 10 Right of baseline 10 pts up and in from bottom right
-right 10 Right of baseline 10 pts in from the center right
-diagonal Diagonal, bottom left to top right, centered on page
-reverse-diagonal Diagonal, top left to bottom right, centered on page
-center Centered on page

No attempt is made to take account of the page rotation when interpreting the position, so
-prerotate may be added to the command line if the file contains pages with a non-zero
viewing rotation (to silence the rotation warning, add -no-warn-rotate instead) This is
equivalent to pre-processing the document with —~upright (see chapter 3).

The —relative-to-cropbox modifier can be added to the command line to make these
measurements relative to the crop box instead of the media box.

The default position is equivalent to ~topleft 100.

The -midline option may be added to specify that the positioning commands above are
to be considered relative to the midline of the text, rather than its baseline. Similarly, the
—-topline option may be used to specify that the position is taken relative to the top of the text.

8.2.5 Font and Size

The font may be set with the ~font option. The 14 Standard PDF fonts are available:

Chapter 8. Watermarks and Stamps 57

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
ZapfDingbats

For example, page numbers in Times Italic can be achieved by:

cpdf —-add-text "-%Page-" —-font "Times-Italic" in.pdf -o out.pdf

See Section 14.3 for how to use other fonts. The font size can be altered with the —font-size
option, which specifies the size in points:

cpdf -add-text "-%Page-" -font-size 36 in.pdf -o out.pdf

8.2.6 Colors

The —~color option takes an RGB (3 values), CYMK (4 values), or Grey (1 value) color. Compo-
nents range between 0 and 1. The following RGB colors are predefined:

Color R,G,B
white 1,1,1

black 0,0,0
red 1,0,0
green 0,1,0
blue 0,0,1

7

cpdf —-add-text "Hullo" -color "red" in.pdf -o out.pdf

cpdf —-add-text "Hullo" -color "0.5 0.5 0.5" in.pdf -o out.pdf
cpdf -—-add-text "Hullo" -color "0.75" in.pdf -o out.pdf

cpdf -add-text "Hullo" -color "0.5 0.5 0.4 0.9" in.pdf -o out.pdf

Partly-transparent text may be specified using the —opacity option. Wholly opaque is 1 and
wholly transparent is 0. For example:

58 Chapter 8. Watermarks and Stamps

cpdf —-add-text "DRAFT" -color "red" -opacity 0.3 -o out.pdf

8.2.7 Outline Text

The -outline option sets outline text. The line width (default 1pt) may be set with the
-linewidth option. For example, to stamp documents as drafts:

cpdf —add-text "DRAFT" -diagonal -outline in.pdf -o out.pdf

8.2.8 Multi-line Text

The code \n can be included in the text string to move to the next line. In this case, the vertical
position refers to the baseline of the first line of text (if the position is at the top, top left or top
right of the page) or the baseline of the last line of text (if the position is at the bottom, bottom
left or bottom right).

cpdf -add-text "Specification\n%Page of %EndPage"
—topright 10 in.pdf -o out.pdf

The -midline option may be used to make these vertical positions relative to the midline of a
line of text rather than the baseline, as usual.

The -1ine-spacing option can be used to increase or decrease the line spacing, where a
spacing of 1 is the standard.

cpdf -add-text "Specification\n%Page of %EndPage"
—-topright 10 -line-spacing 1.5 in.pdf -o out.pdf

Justification of multiple lines is handled by the ~justify-left, -justify-right and
-Jjustify-center options. The defaults are left justification for positions relative to the left
hand side of the page, right justification for those relative to the right, and center justification
for positions relative to the center of the page. For example:

cpdf —add-text "Long line\nShort" —-justify-right
in.pdf -o out.pdf

Chapter 8. Watermarks and Stamps 59

8.2.9 Special Characters

If your command line allows for the inclusion of unicode characters, the input text will be
considered as UTF8 by cpdf. Special characters which exist in the PDF WinAnsiEncoding Latin
1 code (such as many accented characters) will be reproduced in the PDE This does not mean,
however, that every special character can be reproduced — it must exist in the font. When using a
custom font, cpdf will attempt to convert from UTES to the encoding of that font automatically.

(For compatibility with previous versions of cpdf, special characters may be introduced
manually with a backslash followed by the three-digit octal code of the character in the PDF
WinAnsiEncoding Latin 1 Code. The full table is included in Appendix D of the Adobe
PDF Reference Manual, which is available at ht tps: //wwwimages2.adobe.com/content/
dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf. For example, a German sharp s
(8) may be introduced by \337.)

8.3 Stamping Graphics

A rectangle may be placed on one or more pages by using the ~add-rectangle <size>
command. Most of the options discussed above for text placement apply in the same way. For
example:

cpdf -add-rectangle "200 300" -pos-right 30 -color red -outline
in.pdf -o out.pdf

This can be used to blank out or highlight part of the document. The following positioning
options work as you would expect: ~topleft, ~top, ~topright, ~right, -bottomright,
~bottom, ~bottomleft, -left, ~center. When using the option -pos-left "x y", the
point (x, y) refers to the bottom-left of the rectangle. When using the option -pos-right
"x y", the point (x, y) refers to the bottom-right of the rectangle. When using the option
-pos-center "x y", the point (x, y) refers to the center of the rectangle. The options
-diagonal and -reverse-diagonal have no meaning.

8.4 Low-level facilities

These two operations add content directly to the beginning or end of the page data for a page.
You must understand the PDF page description language to use these.

cpdf -prepend-content <content> in.pdf [<range>] -o out.pdf

cpdf -postpend-content <content> in.pdf [<range>] -o out.pdf

The -fast option may be added (see Chapter 1). The ~stamp-as-xobject operation puts a
file in another as a Form XObject on the given pages. You can then use ~-prepend-content or
-postpend-content to use it.

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf

cpdf -stamp-as-xobject stamp.pdf in.pdf

[<range>]

-0 out.pdf

C Interface

/+ CHAPTER 8. Logos, Watermarks and Stamps =/

/ *
* cpdf_stampOn (stamp_pdf, pdf, range) stamps stamp_pdf on top of all the
* pages in the document which are in the range. The stamp is placed with its
% origin at the origin of the target document.
*/
void cpdf_stampOn (int, int, int);

/ *

* cpdf_stampUnder (stamp_pdf, pdf, range) stamps stamp_pdf under all the

* pages in the document which are in the range. The stamp is placed with its
% origin at the origin of the target document.

*/

void cpdf_stampUnder (int, int, int);

/ *
* cpdf_stampExtended (pdf, pdf2, range, isover, scale_stamp_to_fit, pos,
* relative_to_cropbox) is a stamping function with extra features. - isover
* true, pdf goes over pdf2, isover false, pdf goes under pdf2 -
* scale_stamp_to_fit scales the stamp to fit the page - pos gives the
* position to put the stamp - relative_to_cropbox: if true, pos is relative

* to cropbox not mediabox.
x/
void cpdf_stampExtended (int, int, int, int, int, struct cpdf_position, int);

/ *

* cpdf_combinePages (under, over) combines the PDFs page-by-page, putting
* each page of 'over' over each page of 'under'.

x/

int cpdf_combinePages (int, int);

/* Adding text. Adds text to a PDF, if the characters exist in the font. x/

/ *
* Special codes
*
* %$Page Page number in arabic notation (1, 2, 3...)
*
* Sroman Page number in lower-case roman notation (i, ii, iii...)
*
* %Roman Page number in upper-case roman notation (I, II, III...)
*
* %$EndPage Last page of document in arabic notation
*
* %Label The page label of the page
*
* %EndLabel The page label of the last page

$filename The full file name of the input document

o
)

oe
>

oe
o

o
o

Full month name

o\
[o

Day of the month

oe
0]

Day of the month

o
s

o\°
—

Day of the year

o
3

Month of the vyea

o\
=

"a.m" or "p.m"

o\ o oe
=] 0 e}
n

33}

3

[0)

ol

0

oo

jas]

o

=

o\°

0

oe
o

Weekday (1-7, 1

o
=

Weekday (0-6, O

o\
<

Year (0000-9999)

oe
oe

The % character

ELE S T R T S S S NS S S S N I N S S S R S S S S S N S S S S S, S S
oe
u

/* The standard fonts =/

enum cpdf_font {
cpdf_timesRoman,
cpdf_timesBold,
cpdf_timesItalic,
cpdf_timesBoldItalic,
cpdf_helvetica,
cpdf_helveticaBold,
cpdf_helveticaOblique,
cpdf_helveticaBoldOblique,
cpdf_courier,

Abbreviated weekday name

Full weekday name

(January,

(

(

(0

r

Minute of the hour

/%
/%
/ *
/*
/%
/ *
/ *
/%
/ *

(Sun, Mon etc.)

(Sunday, Monday etc.)

Abbreviated month name (Jan,

01-31)

1-31)

Hour in 24-hour clock (00-23)

Hour in 12-hour clock (01-12)

01-366)

(01-12)

(00-59)

Second of the minute (00-61)

Monday)

Monday)

Feb etc.)

February etc.)

Times Roman =*/
Times Bold x/

Times Ital

ic */

Times Bold Italic */

Helvetica
Helvetica
Helvetica
Helvetica
Courier =/

*/

Bold */

Oblique =*/

Bold Oblique =/

cpdf_courierBold,

cpdf_courierOblique,

cpdf_courierBoldOblique
}i

/* Courier Bold =*/
/* Courier Oblique =/
/* Courier Bold Oblique */

/* Justifications for multi line text =/

enum cpdf_justification {

cpdf_leftJustify, /+ Left justify =*/
cpdf_CentreJustify, /+ Centre justify =/
cpdf_RightJustify /+ Right justify =/

}i

/+ Add text =/
void cpdf_addText (int,

int,
int,

const char([],

double,
int,

enum cpdf_font,

double,
double,
double,
double,
int,

int,

int,

double,

enum cpdf_justification,

int,

int,

/ *
/%
/*
/%
/*
/*

*

/+ If true,

* collect metrics. */
/+ Document =/
/+ Page Range */
/* The text to add */
struct cpdf_position, /% Position to add text at */
/* Linespacing, 1.0 = normal =/
/+ Starting Bates number =*/
/+ Font =/
/* Font size in points */

/+ Red component of colour, 0.

Green component of colour, 0.0 - 1.0 */
Blue component of colour, 0.0 — 1.0 =/
If true, text is added underneath rather

than on top */

If true,

not media box */

If true,

filled «/
Opacity, 1.0 = opaque, 0.0 = wholly
transparent */

/ *
/ *

*

const charl[], /=

double,
int
)

/ *
/ *

position is relative to crop box

text i1s outline rather than

/+ Justification =*/

0

don't actually add text but

1.0 =/

If true, position is relative to midline
of text, not baseline */
If true, position is relative to topline
of text, not baseline =%/
filename that this document was read from

(optional) =/
line width =*/

embed fonts */

/* Add text, with most parameters default. =/
void cpdf_addTextSimple (int,
int,
const charl[], / *
struct cpdf_position, /x

/ *
/ *

Document «*/

Page range x/

The text to add */
Position to add text
at */

enum cpdf_font, /* font =/
double) ; /x font size */

/*
* cpdf_removeText (pdf, range) will remove any text added by libcpdf from the
* given pages.
x/

void cpdf_removeText (int, int);

/*

* Return the width of a given string in the given font in thousandths of a
* point.
x/

int cpdf_textWidth (enum cpdf_font, const char[]);

/+ cpdf_addContent (content, before, range, pdf) adds page content before (if
* true) or after (if false) the existing content to pages in the given range
* in the given PDF. «/

void cpdf_addContent (const char([], int, int, int);

/* cpdf_stampAsXObject (pdf, range, stamp_pdf) stamps stamp_pdf onto the pages
* in the given range in pdf as a shared Form XObject. The name of the
*+ newly-created XObject is returned. */

char xcpdf_stampAsXObject (int, int, int);

Chapter 9

Multipage Facilities

cpdf -pad-before in.pdf [<range>] [-pad-with pad.pdf] -o out.pdf
cpdf -pad-after in.pdf [<range>] [-pad-with pad.pdf] -o out.pdf
cpdf -pad-every [<integer>] in.pdf [-pad-with pad.pdf] -o out.pdf
cpdf -pad-multiple [<integer>] in.pdf -o out.pdf

cpdf -pad-multiple-before [<integer>] in.pdf -o out.pdf

cpdf [-impose <pagesize> | impose-xy <x y>]

[
[-impose-columns] [-impose-rtl] [-impose-btt]
[-impose-margin <margin>] [-impose-spacing <spacing>]
[-impose-linewidth <width>] [-fast]

in.pdf -o out.pdf

cpdf -twoup-stack [-fast] in.pdf -o out.pdf
cpdf —-twoup [-fast] in.pdf -o out.pdf

9.1 Inserting Blank Pages

Sometimes, for instance to get a printing arrangement right, it’s useful to be able to insert blank
pages into a PDF file. cpdf can add blank pages before a given page or pages, or after. The
pages in question are specified by a range in the usual way:

cpdf -pad-before in.pdf 1 -o out.pdf
Add a blank page before page 1 (i.e. at the beginning of the document.)
cpdf -pad-after in.pdf 2,16,38,84,121,147 -o out.pdf

Add a blank page after pages 2, 16, 38, 84, 121 and 147 (for instance, to add a clean page between
chapters of a document.)

65

66 Chapter 9. Multipage Facilities

The dimensions of the padded page are derived from the boxes (media box, crop box etc.) of
the page after or before which the padding is to be applied.

The -pad-every n operation places a blank page after every n pages, excluding any last
one. For example. ..

cpdf -pad-every 3 in.pdf -o out.pdf

Add a blank page after every three pages

...on a9 page document adds a blank page after pages 3 and 6.

In all three of these operations, one may specify -pad-with providing a (usually one-
page) PDF file to be used instead of a blank page. For example, a page saying “This page left
intentionally blank”.

The -pad-multiple n operation adds blank pages so the document has a multiple of n
pages. For example:

cpdf -pad-multiple 8 in.pdf -o out.pdf

Add blank pages to in.pdf so it has a multiple of 8 pages.

The -pad-multiple-before n operation adds the padding pages at the beginning of the
file instead.

9.2 Imposition

Imposition is the act of putting two or more pages of an input document onto each page of the
output document. There are two operations provided by cpdf:

* the —impose operation which, given a page size fits multiple pages into it; and

¢ the -impose-xy operation which, given an « and y value, builds an output page which
fits « input pages horizontally and y input pages vertically.

cpdf -impose alOlandscape in.pdf -o out.pdf

Impose as many pages as will fit on to new A0 landscape pages.

cpdf —impose-xy "3 4" in.pdf -o out.pdf

Impose 3 across and 4 down on to new pages of 3 times the width and 4 times the height of the input
ones.

The z value for ~impose-xy may be set to zero to indicate an infinitely-wide page; the y
value to indicate an infinitely-long one.

In both cases, the pages in the input file are assumed to be of the same dimensions.

The following options may be used to modify the output:

Chapter 9. Multipage Facilities 67

* —impose-columns Lay the pages out in columns rather than rows.
¢ —impose-rtl Lay the pages out right-to-left.
* -impose-btt Lay the pages out bottom-to-top.

* —-impose-margin <margin> Add a margin around the edge of the page of the given
width. When using -impose-xy the page size increases; with ~impose the pages are
scaled.

* —impose-spacing <spacing> Add spacing between each row and column. When
using —impose-xy the page size increases; with —impose the pages are scaled.

* —impose-linewidth <width> Add aborder around each input page. With —impose
the pages are scaled after the border is added, so you must account for this yourself.

To impose with rotated pages, for example to put two A4 portrait pages two-up on an A3
landscape page, rotate them prior to imposition.

Two other ways of putting multiple pages on a single page remain from earlier versions of
cpdf which lacked a general imposition operation. The ~twoup-stack operation puts two
logical pages on each physical page, rotating them 90 degrees to do so. The new mediabox is
thus larger. The ~twoup operation does the same, but scales the new sides down so that the
media box is unchanged.

cpdf -two-up in.pdf -o out.pdf

Impose a document two-up, keeping the existing page size.
cpdf —-two-up-stack in.pdf -o out.pdf

Impose a document two-up on a larger page by rotation.

NB: For all imposition options, see also discussion of -~fast in Section 1.13.

68 Chapter 9. Multipage Facilities

C Interface

/* CHAPTER 9. Multipage facilities =*/

/* cpdf_impose (pdf, x, y, fit, columns, rtl, btt, center, margin, spacing,
* linewidth) imposes a PDF. There are two modes: imposing x % y, or imposing
* to fit a page of size x % y. This is controlled by fit. Columns imposes by
% columns rather than rows. rtl is right-to-left, btt bottom-to-top. Center is
* unused for now. Margin is the margin around the output, spacing the spacing
* between imposed inputs. =*/

void cpdf_impose (int, double, double, int, int, int, int, int, double, double,

double) ;

/ *
* Impose a document two up. cpdf_twoUp does so by retaining the existing
* page size, scaling pages down. cpdf_twoUpStack does so by doubling the
* page size, to fit two pages on one.
*/

void cpdf_twoUp (int);

void cpdf_twoUpStack (int);

/%
* cpdf_padBefore (pdf, range) adds a blank page before each page in the given
* range.
*/

void cpdf_padBefore (int, int);

/%
* cpdf_padAfter (pdf, range) adds a blank page after each page in the given
* range.
*/

void cpdf_padAfter (int, int);

/+ cpdf_pageEvery (pdf, n) adds a blank page after every n pages. =*/
void cpdf_padEvery (int, int);

/*
* cpdf_padMultiple (pdf, n) adds pages at the end to pad the file to a
* multiple of n pages in length.
*/

void cpdf_padMultiple (int, int);

/%
* cpdf_padMultiple (pdf, n) adds pages at the beginning to pad the file to a
* multiple of n pages in length.
*/

void cpdf_padMultipleBefore (int, int);

Chapter 10

Annotations

cpdf -list-annotations in.pdf [<range>]
cpdf -list-annotations-json in.pdf [<range>]
cpdf -copy-annotations from.pdf to.pdf [<range>] -o out.pdf

cpdf -remove-annotations in.pdf [<range>] -o out.pdf

10.1 Listing Annotations

The -1list-annotations operation prints the textual content of any annotations on the
selected pages to standard output. Each annotation is preceded by the page number and
followed by a newline. The output of this operation is always UTF8.

cpdf -list-annotations in.pdf > annots.txt

Print annotations from in.pdf, redirecting output to annots. txt.

More information can be obtained by listing annotations in JSON format:

cpdf -list-annotations-json in.pdf > annots.json

Print annotations from in.pdf in JSON format, redirecting output to annots. json.

This produces an array of (page number, annotation) pairs giving the PDF structure of each
annotation. Destination pages for page links will have page numbers in place of internal PDF
page links, and certain indirect objects are made direct but the content is otherwise unaltered.
Here is an example entry for an annotation on page 10:

[
10,

69

70 Chapter 10. Annotations

{"/H": { "N": "/I" },
"/Border": [{ "I": 0}, { "I": 0}, { "I": 0} I,
"/Rect": [
{ "F": 89.88023 }, { "F": 409.98401 }, { "F": 323.90561 }, {
"F": 423.32059 } 1,

"/Subtype" N { IIN" . "/Link" } ,
"/Type n . { "N" . n /Annot n } ,
vv/Au: {
II/S": { llN": "/URI" }’
"/URI": "http://www.google.com/" },

"/StructParent": { "I": 10 } }]

A future version of cpdf will allow these JSON annotations to be edited and re-loaded into
a PDF file.

10.2 Copying Annotations

The ~copy-annotations operation copies the annotations in the given page range from one
file (the file specified immediately after the option) to another pre-existing PDF. The range is
specified after this pre-existing PDF. The result is then written an output file, specified in the
usual way.

cpdf -copy-annotations from.pdf to.pdf 1-10 -o result.pdf

Copy annotations from the first ten pages of from.pdf onto the PDF file to.pd £, writing the result
to results.pdf.

10.3 Removing Annotations

The —~remove-annotations operation removes all annotations from the given page range.

cpdf -remove-annotations in.pdf 1 -o out.pdf

Remove annotations from the first page of a file only.

Chapter 10. Annotations 71

C Interface

/* CHAPTER 10. Annotations =/

/* Return the annotations from a PDF in JSON format, returning also its length.
x/
void xcpdf_annotationsJSON (int, int x);

72

Chapter 10. Annotations

Chapter 11

Document Information and
Metadata

cpdf -info [-raw | -utf8] in.pdf
cpdf -page-info in.pdf
cpdf -pages in.pdf

cpdf -set-title <title of document>
[-also-set-xmp] [-just-set-xmp] [-raw] in.pdf -o out.pdf
(Also —set-author etc. See Section 11.2.)

cpdf -set-page-layout <layout> in.pdf -o out.pdf
cpdf -set-page-mode <mode> in.pdf -o out.pdf

cpdf -hide-toolbar <true | false> in.pdf -o out.pdf
-hide-menubar
—~hide-window-ui
-fit-window
—-center-window
—display-doc-title

cpdf -open-at-page <page number> in.pdf -o out.pdf
cpdf -open-at-page—-fit <page number> in.pdf -o out.pdf

cpdf -set-metadata <metadata-file> in.pdf -o out.pdf
cpdf -remove-metadata in.pdf -o out.pdf

cpdf -print-metadata in.pdf

cpdf -create-metadata in.pdf -o out.pdf

cpdf -set-metadata-date <date> in.pdf -o out.pdf

cpdf -add-page-labels in.pdf -o out.pdf
[-label-style <style>] [-label-prefix <string>]
[-label-startval <integer>] [-labels-progress]

73

74 Chapter 11. Document Information and Metadata

cpdf -remove-page-labels in.pdf -o out.pdf
cpdf -print-page-labels in.pdf

11.1 Reading Document Information

The -info operation prints entries from the document information dictionary, and from any
XMP metadata to standard output.

Scpdf -info pdf_reference.pdf

Encryption: 40bit

Linearized: true

Permissions: No edit

Version: 1.6

Pages: 1310

Title: PDF Reference, version 1.7

Author: Adobe Systems Incorporated

Subject: Adobe Portable Document Format (PDF)
Keywords:

Creator: FrameMaker 7.2

Producer: Acrobat Distiller 7.0.5 (Windows)
Created: D:200610170810202

Modified: D:20061118211043-02"'30"

XMP pdf:Producer: Adobe PDF library 7.77

XMP xmp:CreateDate: 2006-12-21T18:19:09+01:00
XMP xmp:CreatorTool: Adobe Illustrator CS2
XMP xmp:MetadataDate: 2006-12-21T18:19:092
XMP xmp:ModifyDate: 2006-12-21T18:19:09Z

XMP dc:title: AIG6

The details of the format for creation and modification dates can be found in Appendix A.

By default, cpdf strips to ASCII, discarding character codes in excess of 127. In order to
preserve the original unicode, add the —ut £8 option. To disable all postprocessing of the string,
add -raw. See Section 1.17 for more information.

The -page-info operation prints the page label, media box and other boxes page-by-page
to standard output, for all pages in the current range.

Scpdf -page-info l4psfonts.pdf

Page 1:

Label: i

MediaBox: 0.000000 0.000000 600.000000 450.000000
CropBox: 200.000000 200.000000 500.000000 500.000000
BleedBox:

Chapter 11. Document Information and Metadata 75

TrimBox:
ArtBox:
Rotation: 0

Note that the format for boxes is minimum X, minimum y, maximum x, maximum y.

The -pages operation prints the number of pages in the file.

cpdf -pages Archos.pdf
8

11.2 Setting Document Information

The document information dictionary in a PDF file specifies various pieces of information about a
PDF. These can be consulted in a PDF viewer (for instance, Acrobat).

Here is a summary of the commands for setting entries in the document information dictio-
nary:

Information Example command-line fragment

Title cpdf -set-title "Discourses"

Author cpdf -set-author "Joe Smith"

Subject cpdf -set-subject "Behavior"

KeyMKmds cpdf -set-keywords "Ape Primate"

Creator cpdf -set-creator "Original Program"
Producer cpdf —-set-producer "Distilling Program"
Creation Date cpdf -set-create "D:19970915110347-08700""
Modification Date cpdf -set-modify "D:19970915110347-08"00""
Mark as Trapped cpdf -set-trapped

Mark as Untrapped cpdf -set-untrapped

(The details of the format for creation and modification dates can be found in Appendix A.
Using the date "now" uses the time and date at which the command is executed. Note also that
—producer and —creator may be used to set the producer and/or the creator when writing
any file, separate from the operations described in this chapter.)

For example, to set the title, the full command line would be

cpdf -set-title "A Night in London" in.pdf -o out.pdf

The text string is considered to be in UTF8 format, unless the ~raw option is added—in which
case, it is unprocessed, save for the replacement of any octal escape sequence such as \017,
which is replaced by a character of its value (here, 15).

76 Chapter 11. Document Information and Metadata

To set also any field in the XMP metadata, add —also-set-xmp. The field must exist
already. To set only the field (not the document information dictionary), add —just-set-xmp
instead.

11.3 XMP Metadata

PDF files can contain a piece of arbitrary metadata, often in XMP format. This is typically stored
in an uncompressed stream, so that other applications can read it without having to decode the
whole PDEF. To set the metadata:

cpdf -set-metadata data.xml in.pdf -o out.pdf

To remove any metadata:

cpdf -remove-metadata in.pdf -o out.pdf

To print the current metadata to standard output:

cpdf -print-metadata in.pdf

To create XMP metadata from scratch, using any information in the Document Information
Dictionary (old-style metadata):

cpdf -create-metadata in.pdf -o out.pdf

To set the XMP metadata date field, use:

cpdf -set-metadata-date <date> in.pdf -o out.pdf

The date format is defined in Appendix A.2. Using the date "now" uses the time and date at
which the command is executed.

11.4 Upon Opening a Document

11.4.1 Page Layout

The -set-page-layout operation specifies the page layout to be used when a document is
opened in, for instance, Acrobat. The possible (case-sensitive) values are:

Chapter 11. Document Information and Metadata 77

SinglePage

OneColumn

TwoColumnLeft

TwoColumnRight

TwoPageLeft

TwoPageRight

For instance:

Display one page at a time
Display the pages in one column
Display the pages in two columns, odd numbered pages

on the left

Display the pages in two columns, even numbered pages
on the left

(PDF 1.5 and above) Display the pages two at a time, odd
numbered pages on the left

(PDF 1.5 and above) Display the pages two at a time, even
numbered pages on the left

cpdf -set-page-layout TwoColumnRight in.pdf -o out.pdf

NB: If the file has a valid /OpenAct ion setting, which tells the PDF reader to open at a certain
page or position on a page, this will override the page layout option. To prevent this, use the
-remove-dict-entry functionality from Section 18.9:

cpdf -remove-dict-entry /OpenAction in.pdf -o out.pdf

11.4.2 Page Mode

The page mode in a PDF file defines how a viewer should display the document when first
opened. The possible (case-sensitive) values are:

UseNone
UseOutlines

UseThumbs

FullScreen

UseOC

UseAttachments

For instance:

Neither document outline nor thumbnail images visible
Document outline (bookmarks) visible
Thumbnail images visible

Full-screen mode (no menu bar, window controls, or any-
thing but the document visible)

(PDF 1.5 and above) Optional content group panel visible
(PDF 1.5 and above) Attachments panel visible

cpdf -set-page-mode FullScreen in.pdf -o out.pdf

78 Chapter 11. Document Information and Metadata

11.4.3 Display Options

-hide-toolbar Hide the viewer’s toolbar

-hide-menubar Document outline (bookmarks) visible
-hide-window-ui Hide the viewer’s scroll bars

-fit-window Resize the document’s windows to fit size of first page
—-center-window Position the document window in the center of the screen

Display the document title instead of the file name in the

—-display—-doc-title
pray title bar

For instance:

cpdf -hide-toolbar true in.pdf -o out.pdf

The page a PDF file opens at can be set using ~open-at-page:

cpdf -open-at-page 15 in.pdf -o out.pdf

To have that page scaled to fit the window in the viewer, use ~open-at-page-fit instead:

cpdf -open-at-page-fit end in.pdf -o out.pdf

(Here, we used end to open at the last page. Any page specification describing a single page is
ok here.)

11.5 Page Labels

It is possible to add page labels to a document. These are not the printed on the page, but
may be displayed alongside thumbnails or in print dialogue boxes by PDF readers. We use
—add-page-labels to do this, by default with decimal arabic numbers (1,2,3...). We can add
—-label-style to choose what type of labels to add from these kinds:

DecimalArabic 1,2,3,4,5...
LowercaseRoman 1i,ii,iii, iv, v...
UppercaseRoman I II III, IV, V...
Lowercaseletters a,b,c, ...,z aa, bb...
Uppercaseletters A,B,C,...,Z, AA,6BB...
NoLabelPrefixOnly No number, but a prefix will be used if defined.

We can use ~label-prefix to add a textual prefix to each label. Consider a file with twenty
pages and no current page labels (a PDF reader will assume 1,2,3. .. if there are none). We will
add the following page labels:

Chapter 11. Document Information and Metadata

i1ii,1ii,iv, 1,2,3,4,5,6,7,8,9,10, A-0, A-1, A-2, A-3, A4, A-5

Here are the commands, in order:

79

cpdf -add-page-labels in.pdf 1-4 -label-style LowercaseRoman
—-o out.pdf

cpdf —-add-page-labels out.pdf 5-14 -o out.pdf

cpdf -add-page-labels out.pdf 15-20 -label-prefix "A-"
—label-startval 0 -o out.pdf

By default the labels begin at page number 1 for each range. To override this, we can use
—label-startval (we used 0 in the final command), where we want the numbers to begin
at zero rather than one. The option -labels-progress can be added to make sure the

start value progresses between sub-ranges when the page range specified is disjoint, e.g 1-9,

30-40 or odd.

Page labels may be removed altogether by using -remove-page-labels command. To

print the page labels from an existing file, use -print-page-labels. For example:

$ cpdf -print-page-labels cpdfmanual.pdf
labelstyle: LowercaseRoman

labelprefix: None

startpage: 1

startvalue: 1

labelstyle: DecimalArabic

labelprefix: None

startpage: 9

startvalue: 1

C Interface

/+x CHAPTER 11. Document Information and Metadata x/

/*

* cpdf_isLinearized(filename) finds out if a document is linearized as
* quickly as possible without loading it.
x/

int cpdf_isLinearized(const char[]);

/* cpdf_getVersion (pdf) returns the minor version number of a document. =/
int cpdf_getVersion (int);

/* cpdf_getMajorVersion (pdf) returns the minor version number of a document. =/
int cpdf_getMajorVersion (int);

/* cpdf_getTitle (pdf) returns the title of a document. x/
char xcpdf_getTitle (int);

/* cpdf_getAuthor (pdf) returns the author of a document. */
char xcpdf_getAuthor (int);

/* cpdf_getSubject (pdf) returns the subject of a document. =/
char xcpdf_getSubject (int);

/* cpdf_getKeywords (pdf) returns the keywords of a document. =/
char xcpdf_getKeywords (int) ;

/* cpdf_getCreator (pdf) returns the creator of a document. =/
char xcpdf_getCreator (int);

/* cpdf_getProducer (pdf) returns the producer of a document. =/
char xcpdf_getProducer (int) ;

/+ cpdf_getCreationDate (pdf) returns the creation date of a document. =/
char xcpdf_getCreationDate (int);

/+ cpdf_getModificationDate (pdf) returns the modification date of a document. x/
char xcpdf_getModificationDate (int);

/+ cpdf_getTitleXMP (pdf) returns the XMP title of a document. =/
char xcpdf_getTitleXMP (int) ;

/* cpdf_getAuthorXMP (pdf) returns the XMP author of a document. =*/
char xcpdf_getAuthorXMP (int) ;

/* cpdf_getSubjectXMP (pdf) returns the XMP subject of a document. =/
char xcpdf_getSubjectXMP (int) ;

/* cpdf_getKeywordsXMP (pdf) returns the XMP keywords of a document. =*/

char *cpdf_getKeywordsXMP (int) ;

/* cpdf_getCreatorXMP (pdf) returns the XMP creator of a document. x/
char *cpdf_getCreatorXMP (int) ;

/* cpdf_getProducerXMP (pdf) returns the XMP producer of a document. =/
char *cpdf_getProducerXMP (int) ;

/* cpdf_getCreationDateXMP (pdf) returns the XMP creation date of a document.

char *cpdf_getCreationDateXMP (int) ;

/ *
* cpdf_getModificationDateXMP (pdf) returns the XMP modification date of a
* document.
x/

char *cpdf_getModificationDateXMP (int) ;

/* cpdf_setTitle (pdf) sets the title of a document. */
void cpdf_setTitle (int, const char([]);

/* cpdf_setAuthor (pdf) sets the author of a document. =/
void cpdf_setAuthor (int, const charl[]);

/* cpdf_setSubject (pdf) sets the subject of a document. =*/
void cpdf_setSubject (int, const charl(]);

/* cpdf_setKeywords (pdf) sets the keywords of a document. =/
void cpdf_setKeywords (int, const charl]);

/* cpdf_setCreator (pdf) sets the creator of a document. =*/
void cpdf_setCreator (int, const char([]);

/* cpdf_setProducer (pdf) sets the producer of a document. =/
void cpdf_setProducer (int, const charl[]);

/* cpdf_setCreationDate (pdf) sets the creation date of a document. =*/
void cpdf_setCreationDate (int, const char(]);

/* cpdf_setModificationDate (pdf) sets the modifcation date of a document. =*/

void cpdf_setModificationDate (int, const char[]);

/* cpdf_setTitleXMP (pdf) set the XMP title of a document. =/
void cpdf_setTitleXMP (int, const charl]);

/* cpdf_setAuthorXMP (pdf) set the XMP author of a document. =/
void cpdf_setAuthorXMP (int, const char([]);

/* cpdf_setSubjectXMP (pdf) set the XMP subject of a document. =/
void cpdf_setSubjectXMP (int, const charl]);

/* cpdf_setKeywordsXMP (pdf) set the XMP keywords of a document. =/

*/

void cpdf_setKeywordsXMP (int, const char[]);

/+ cpdf_setCreatorXMP (pdf) set the XMP creator of a document. =/
void cpdf_setCreatorXMP (int, const char(]);

/* cpdf_setProducerXMP (pdf) set the XMP producer of a document. =*/
void cpdf_setProducerXMP (int, const char[]);

/* cpdf_setCreationDateXMP (pdf) set the XMP creation date of a document. =/
void cpdf_setCreationDateXMP (int, const charl[]);

/*
* cpdf_setModificationDateXMP (pdf) set the XMP modification date of a
* document.
x/

void cpdf_setModificationDateXMP (int, const char(]);

/%

* Dates: Month 1-31, day 1-31, hours (0-23), minutes (0-59), seconds (0-59),
* hour_offset is the offset from UT in hours (-23 to 23); minute_offset is

+ the offset from UT in minutes (=59 to 59).

*/

/*
* cpdf_getDateComponents (datestring, year, month, day, hour, minute, second,
* hour_offset, minute_offset) returns the components from a PDF date string.
x/
void cpdf_getDateComponents (const char([], int %, int =, int %, int %, int =x,
int *, int *, int =*);

/*
* cpdf_dateStringOfComponents (year, month, day, hour, minute, second,
* hour_offset, minute_offset) builds a PDF date string from individual
* components.
*/

char xcpdf_dateStringOfComponents (int, int, int, int, int, int, int, int);

/%
* cpdf_getPageRotation (pdf, pagenumber) gets the viewing rotation for a
* given page.
*/

int cpdf_getPageRotation (int, int);

/ *

* cpdf_hasBox (pdf, pagenumber, boxname) returns true, if that page has the
* given box. E.g "/CropBox".

*/

int cpdf_hasBox(int, int, const char([]);

/%

+ These functions get a box given the document, page number, min x, max x,

+ min y, max y in points. Only succeeds if such a box exists, as checked by

* cpdf_hasBox.

x/
void cpdf_getMediaBox (int, int, double x, double x, double x, double x);
void cpdf_getCropBox (int, int, double %, double %, double x, double x);
void cpdf_getTrimBox (int, int, double x, double x, double *, double x);
void cpdf_getArtBox (int, int, double %, double %, double %, double x);
void cpdf_getBleedBox (int, int, double %, double %, double x, double x);

/ *
* These functions set a box given the document, page range, min x, max X,
* min y, max y in points.
x/

void cpdf_setMediabox (int, int, double, double, double, double);

void cpdf_setCropBox (int, int, double, double, double, double);

void cpdf_setTrimBox (int, int, double, double, double, double);

void cpdf_setArtBox (int, int, double, double, double, double);

void cpdf_setBleedBox (int, int, double, double, double, double);

/* cpdf_markTrapped (pdf) marks a document as trapped. =/
void cpdf_markTrapped(int);

/* cpdf_markUntrapped (pdf) marks a document as untrapped. =/
void cpdf_markUntrapped (int);

/* cpdf_markTrappedXMP (pdf) marks a document as trapped in XMP metadata. x/
void cpdf_markTrappedXMP (int) ;

/* cpdf_markUntrappedXMP (pdf) marks a document as untrapped in XMP metadata.

void cpdf_markUntrappedXMP (int) ;

/+ Document Layouts. =%/

enum cpdf_layout {
cpdf_singlePage,
cpdf_oneColumn,
cpdf_twoColumnLeft,
cpdf_twoColumnRight,
cpdf_twoPageleft,
cpdf_twoPageRight

}i

/* cpdf_setPagelayout (pdf, layout) sets the page layout for a document. =/
void cpdf_setPagelayout (int, enum cpdf_layout);

/* Document page modes. */

enum cpdf_pageMode {
cpdf_useNone,
cpdf_useOutlines,
cpdf_useThumbs,
cpdf_useOC,
cpdf_useAttachments

*/

bi

/+ cpdf_setPageMode (pdf, mode) sets the page mode for a document. =/
void cpdf_setPageMode (int, enum cpdf_pageMode) ;

/+ cpdf_hideToolbar (pdf, flag) sets the hide toolbar flag. x/
void cpdf_hideToolbar (int, int);

/+ cpdf_hideMenubar (pdf, flag) sets the hide menu bar flag. */
void cpdf_hideMenubar (int, int);

/* cpdf_hideWindowUi (pdf, flag) sets the hide window UI flag. =/
void cpdf_hideWindowUi (int, int);

/* cpdf_fitWindow (pdf, flag) sets the fit window flag. x/
void cpdf_fitWindow (int, int);

/* cpdf_centerWindow (pdf, flag) sets the center window flag. =*/
void cpdf_centerWindow (int, int);

/+ cpdf_displayDocTitle (pdf, flag) sets the display doc title flag. =*/
void cpdf_displayDocTitle (int, int);

/* cpdf_openAtPage (pdf, fit, pagenumber) sets the PDF to open, possibly with
* zoom-to-fit, at the given page number. x/
void cpdf_openAtPage (int, int, int);

/*
* cpdf_setMetadataFromFile (pdf, filename) set the XMP metadata of a
* document, given a file name.
x/

void cpdf_setMetadataFromFile (int, const char[]);

/%
* cpdf_setMetadataFromByteArray (pdf, data, length) set the XMP metadata from
* an array of bytes.
x/

void cpdf_setMetadataFromByteArray (int, void x, int);

/ *
* cpdf_getMetadata (pdf, &length) returns the XMP metadata and fills in
* length.
*/

void xcpdf_getMetadata (int, int x);

/* cpdf_removeMetadata (pdf) removes the XMP metadata from a document. =/
void cpdf_removeMetadata (int) ;

/*
* cpdf_createMetadata (pdf) builds fresh metadata as best it can from
* existing metadata in the document.

*/

void cpdf_createMetadata (int);

/ *
* cpdf_setMetadataDate (pdf, date) sets the metadata date for a PDF. The date
* 1s given in PDF date format -- cpdf will convert it to XMP format. The

* date 'now' means now.
*/
void cpdf_setMetadataDate (int, const charl[]);

/* Styles of page label =/
enum cpdf_pagelabelStyle {

cpdf_decimalArabic, /* 1, 2, 3... %/
cpdf_uppercaseRoman, /+* I, II, III... %/
cpdf_lowercaseRoman, /% 1, ii, iii... *x/
cpdf_uppercaseletters, /+* A, B, C... */
cpdf_lowercaseletters /x a, b, c... */
}i
/ *
* Add page labels.
*
* cpdf_addPagelabels (pdf, style, prefix, offset, range, progress)
*
* The prefix is prefix text for each label. The range is the page range the

* labels apply to. Offset can be used to shift the numbering up or down.
*/
void cpdf_addPagelabels (int, enum cpdf_pagelabelStyle, const char[], int, int,
int);

/* cpdf_removePagelLabels (pdf) removes the page labels from the document. x/
void cpdf_removePagelabels (int);

/ *

* cpdf_getPagelLabelStringForPage (pdf, page number) calculates the full label
* string for a given page, and returns it.
x/

char xcpdf_getPagelabelStringForPage (int, int);

/ *
* Get page label data. Call cpdf_startGetPagelabels to find out how many
* there are, then use these serial numbers to get the style, prefix, offset
* and start value (note not a range). Call cpdf_endGetPageLabels to clean up.
*
* For example, a document might have five pages of introduction with roman
* numerals, followed by the rest of the pages in decimal arabic, numbered from
* one:
*
* labelstyle = LowercaseRoman
* labelprefix = ""
* startpage = 1

* startvalue = 1

*

* labelstyle = DecimalArabic
* labelprefix = ""

* startpage = 6

* startvalue = 1

*/

int cpdf_startGetPagelLabels (int);

enum cpdf_pagelabelStyle cpdf_getPagelLabelStyle (int);
char *cpdf_getPagelLabelPrefix (int);

int cpdf_getPagelabelOffset (int);

int cpdf_getPagelLabelRange (int);

void cpdf_endGetPagelabels();

Chapter 12

File Attachments

cpdf —-attach-file <filename> [-to-page <page number>] in.pdf -o out.pdf
cpdf -list-attached-files in.pdf
cpdf -remove-files in.pdf -o out.pdf

cpdf -dump-attachments in.pdf -o <directory>

PDF supports adding attachments (files of any kind, including other PDFs) to an existing file.
The cpdf tool supports adding and removing document-level attachments — that is, ones which
are associated with the document as a whole rather than with an individual page, and also
page-level attachments, associated with a particular page.

12.1 Adding Attachments

To add an attachment, use the —~attach-file operation. For instance,

cpdf —-attach-file sheet.xls in.pdf -o out.pdf

attaches the Excel spreadsheet sheet . x1s to the input file. If the file already has attachments,
the new file is added to their number. You can specify multiple files to be attached by using
—attach-file multiple times. They will be attached in the given order.

The -t o-page option can be used to specify that the files will be attached to the given page,
rather than at the document level. The ~t o-page option may be specified at most once.

12.2 Listing Attachments
To list all document- and page-level attachments, use the ~1ist-attached-files operation.

The page number and filename of each attachment is given, page 0 representing a document-
level attachment.

87

88 Chapter 12. File Attachments

Scpdf -list-attached-files l4psfonts.pdf
0 utility.ml

0 utility.mli

4 notes.xls

12.3 Removing Attachments

To remove all document-level and page-level attachments from a file, use the ~-remove-files
operation:

cpdf -remove-files in.pdf -o out.pdf

12.4 Dumping Attachments to File

The ~dump-attachments operation, when given a PDF file and a directory path as the output,
will write each attachment under its filename (as displayed by -1ist-attached-files to
that directory. The directory must exist prior to the call.

cpdf —-dump-attachments in.pdf -o /home/fred/attachments

Unless the ~raw option is given, the filenames are stripped of dubious special characters before
writing. It is converted from unicode to 7 bit ASCII, and the following characters are removed,
in addition to any character with ASCII code less than 32:

/2 <>\ o L e

Chapter 12. File Attachments 89

C Interface

/* CHAPTER 12. File Attachments x/

/ *
* cpdf_attachFile(filename, pdf) attaches a file to the pdf. It is attached
* at document level.
*/

void cpdf_attachFile (const char[], int);

/ *
* cpdf_attachFileToPage (filename, pdf, pagenumber) attaches a file, given
* its file name, pdf, and the page number to which it should be attached.
*/

void cpdf_attachFileToPage (const char[], int, int);

/ *
* cpdf_attachFileFromMemory (memory, length, filename, pdf) attaches from
* memory, Jjust like cpdf_attachFile.
*/

void cpdf_attachFileFromMemory (void %, int, const char[], int);

/ *
* cpdf_attachFileToPageFromMemory (memory, length, filename, pdf, pagenumber)
* attaches from memory, Jjust like cpdf_attachFileToPage.
*/

void cpdf_attachFileToPageFromMemory (void *, int, const char([], int, int);

/* Remove all page- and document-level attachments from a document =/
void cpdf_removeAttachedFiles (int);

/%
* List information about attachments. Call cpdf_startGetAttachments (pdf)
+ first, then cpdf_numberGetAttachments to find out how many there are. Then

* cpdf_getAttachmentName to return each one 0...(n - 1). Finally, call
* cpdf_endGetAttachments to clean up.
x/

void cpdf_startGetAttachments (int);

/* Get the number of attachments. */
int cpdf_numberGetAttachments (void);

/* Get the name of the attachment. =*/
char xcpdf_getAttachmentName (int) ;

/* Gets the page number. 0 = document level. x/
int cpdf_getAttachmentPage (int);

/ *

* cpdf_getAttachmentData (serial number, &length) returns a pointer to the

90 Chapter 12. File Attachments

* data, and its length.
*/
void xcpdf_getAttachmentData (int, int x);

/* Clean up after getting attachments. =/
void cpdf_endGetAttachments (void);

Chapter 13

Working with Images

cpdf -extract-images in.pdf [<range>] [-im <path>] [-p2p <path>]
[-dedup | —-dedup-perpage] -o <path>

cpdf -image-resolution <minimum resolution> in.pdf [<range>]

13.1 Extracting images

Cpdf can extract the raster images to a given location. JPEG, JPEG2000 and JBIG2 images are
extracted directly. Other images are written as PNGs, processed with either ImageMagick’s
“magick” command, or NetPBM’s “pnmtopng” program, whichever is installed.

cpdf —-extract-images in.pdf [<range>] [-im <path>] [-p2p <path]
[-dedup | —-dedup-perpage] -o <path>

The -im or —p2p option is used to give the path to the external tool, one of which must
be installed. The output specifer, e.g ~o output/%%% gives the number format for num-
bering the images. Output files are named serially from 0, and include the page number
too. For example, output files might be called output /000-pl. jpg, output/001-pl.png,
output/002-p3. jpg etc. Here is an example invocation:

cpdf —-extract—-images in.pdf —-im magick —-o output/%%%

The output directory must already exist. The ~dedup option deduplicates images entirely; the
—dedup—perpageopﬁon(ﬂﬂyperpage
13.2 Detecting Low-resolution Images

To list all images in the given range of pages which fall below a given resolution (in dots-per-
inch), use the —image—-resolution function:

91

92 Chapter 13. Working with Images

cpdf -image-resolution 300 in.pdf [<range>]

/Im5, 531, 684, 149.935297, 150.138267
/Im6, 184, 164, 149.999988, 150.458710
/Im7, 171, 156, 149.999996, 150.579145
/Im9, 65, 91, 149.999986, 151.071856
/Im10, 94, 60, 149.999990, 152.284285
/Iml5, 184, 139, 149.960011, 150.672060
/Im29, 53, 48, 149.970749, 151.616446

~ 0~

~

~

~

BN N NN
~

~

The format is page number, image name, x pixels, y pixels, x resolution, y resolution. The resolutions
refer to the image’s effective resolution at point of use (taking account of scaling, rotation etc).

13.3 Removing an Image

To remove a particular image, find its name using ~image-resolution with a sufficiently
high resolution (so as to list all images), and then apply the -draft and ~-draft-remove-only
operations from Section 18.1.

Chapter 13. Working with Images 93

C Interface

/* CHAPTER 13. Images. x/

/ *

* Get image data, including resolution at all points of use. Call

* cpdf_startGetImageResolution (pdf, min_required_resolution) will begin the
* process of obtaining data on all image uses below min_required_resolution,
* returning the total number. So, to return all image uses, specify a very
* high min_required_resolution. Then, call the other functions giving a

% serial number 0..<total number> - 1, to retrieve the data. Finally, call

* cpdf_endGetImageResolution to clean up.

*/

int cpdf_startGetImageResolution (int, float);
int cpdf_getImageResolutionPageNumber (int) ;
char xcpdf_getImageResolutionImageName (int) ;
int cpdf_getImageResolutionXPixels (int);
int cpdf_getImageResolutionYPixels (int);
)
)

double cpdf_getImageResolutionXRes (int);
double cpdf_getImageResolutionYRes (int

void cpdf_endGetImageResolution (void);

’

94

Chapter 13. Working with Images

Chapter 14

Fonts

cpdf -list-fonts in.pdf
cpdf -print-font-table -print-font-table-page <n> in.pdf

cpdf -copy-font fromfile.pdf -copy-font-page <int>
—copy-font-name <name> in.pdf [<range>] -o out.pdf

cpdf -remove-fonts in.pdf -o out.pdf
cpdf —-missing-fonts in.pdf
cpdf -embed-missing-fonts —-gs <path to gs> in.pdf -o out.pdf

14.1 Listing Fonts

The -1ist-fonts operation prints the fonts in the document, one-per-line to standard output.
For example:

/F245 /TypeO /Cleargothic-Bold /Identity-H

/F247 /Type0 /ClearGothicSeriallLight /Identity-H
/F248 /Typel /Times—-Roman /WinAnsiEncoding

/F250 /Type0 /Cleargothic-RegularItalic /Identity-H
/F13 /TypeO /Cleargothic-Bold /Identity-H

/Fl6 /Type0 /Arial-ItalicMT /Identity-H

/F21 /TypeO /ArialMT /Identity-H

/F58 /Typel /Times-Roman /WinAnsiEncoding

/F59 /Type0 /ClearGothicSeriallLight /Identity-H
/F61 /TypeO /Cleargothic-BoldItalic /Identity-H
/F68 /TypeO /Cleargothic-RegularItalic /Identity-H
/F47 /TypeO /Cleargothic-Bold /Identity-H

/F49 /TypeO /ClearGothicSerialLight /Identity-H
/F50 /Typel /Times—-Roman /WinAnsiEncoding

/F52 /Type0 /Cleargothic-BoldItalic /Identity-H

W www NN NDNDND P PP

95

96 Chapter 14. Fonts

3 /F54 /TypeO /TimesNewRomanPS-BoldItalicMT /Identity-H
3 /F57 /TypeO /Cleargothic—-RegularItalic /Identity-H

4 /F449 /TypeO /Cleargothic-Bold /Identity-H

4 /F451 /Type0 /ClearGothicSeriallLight /Identity-H

4 /F452 /Typel /Times—-Roman /WinAnsiEncoding

The first column gives the page number, the second the internal unique font name, the third
the type of font (Typel, TrueType etc), the fourth the PDF font name, the fifth the PDF font
encoding.

14.2 Listing characters in a font

We can use cpdf to find out which characters are available in a given font, and to print the
map between character codes, unicode codepoints, and Adobe glyph names. This is presently a
best-effort service, and does not cover all font/encoding types.

We find the name of the font by using -~1ist-fonts:

$./cpdf -list-fonts cpdfmanual.pdf 1
1 /F46 /Typel /XYPLPB+NimbusSanL-Bold
1 /F49 /Typel /MCBERL+URWPalladioL-Roma

We may then print the table, giving either the font’s name (e.g /F46) or basename (e.g
/XYPLPB+NimbusSanL-Bold):

$./cpdf -print-font-table /XYPLPB+NimbusSanL-Bold
-print-font-table-page 1 cpdfmanual.pdf

67 = U+0043 (C - LATIN CAPITAL LETTER C) = /C

68 = U+0044 (D - LATIN CAPITAL LETTER = /D

(D)
70 = U+0046 (F - LATIN CAPITAL LETTER F) = /F
71 = U+0047 (G - LATIN CAPITAL LETTER G) = /G
76 = U+004C (L - LATIN CAPITAL LETTER L) = /L
80 = U+0050 (P - LATIN CAPITAL LETTER P) = /P
84 = U+0054 (T - LATIN CAPITAL LETTER T) = /T
97 = U+0061 (a - LATIN SMALL LETTER A) = /a
99 = U+0063 (c - LATIN SMALL LETTER C) = /c
100 = U+0064 (d - LATIN SMALL LETTER D) = /d
101 = U+0065 (e — LATIN SMALL LETTER E) = /e
104 = U+0068 (h - LATIN SMALL LETTER H) = /h
105 = U+0069 (i - LATIN SMALL LETTER I) = /i
108 = U+006C (1 - LATIN SMALL LETTER L) = /1
109 = U+006D (m - LATIN SMALL LETTER M) = /m
110 = U+006E (n - LATIN SMALL LETTER N) = /n
111 = U+006F (o - LATIN SMALL LETTER O) = /o
112 = U+0070 (p - LATIN SMALL LETTER P) = /p
114 = U+0072 (r - LATIN SMALL LETTER R) = /r
115 = U+0073 (s - LATIN SMALL LETTER S) = /s

116 = U+0074 (t - LATIN SMALL LETTER T) = /t

Chapter 14. Fonts 97

The first column is the character code, the second the Unicode codepoint, the character itself
and its Unicode name, and the third the Adobe glyph name.

14.3 Copying Fonts

In order to use a font other than the standard 14 with —add-text, it must be added to the file.
The font source PDF is given, together with the font’s resource name on a given page, and that
font is copied to all the pages in the input file’s range, and then written to the output file.

The font is named in the output file with its basefont name, so it can be easily used with
—add-text.

For example, if the file fromfile.pdf has a font /GHLIGA+c128 with the name /F10 on
page 1 (this information can be found with ~1ist-fonts), the following would copy the font
to the file in.pdf on all pages, writing the output to out . pdf:

cpdf -copy-font fromfile.pdf -copy-font-name /F10
—-copy-font-page 1 in.pdf -o out.pdf

Text in this font can then be added by giving ~font /GHLIGA+c128. Be aware that due to the
vagaries of PDF font handling concerning which characters are present in the source font, not all
characters may be available, or cpdf may not be able to work out the conversion from UTF8 to
the font’s own encoding. You may add —raw to the command line to avoid any conversion, but
the encoding (mapping from input codes to glyphs) may be non-obvious and require knowledge
of the PDF format to divine.

14.4 Removing Fonts
To remove embedded fonts from a document, use —remove-fonts. PDF readers will substitute

local fonts for the missing fonts. The use of this function is only recommended when file size is
the sole consideration.

cpdf -remove-fonts in.pdf -o out.pdf

14.5 Missing Fonts

The -missing-fonts operation lists any unembedded fonts in the document, one per line.

cpdf -missing-fonts in.pdf

The format is

98 Chapter 14. Fonts

Page number, Name, Subtype, Basefont, Encoding

The operation ~embed-missing-fonts will process the file with gs (which must be installed)
to embed missing fonts (where found):

cpdf -embed-missing-fonts -gs gs in.pdf -o out.pdf

C Interface

/* CHAPTER 14. Fonts. */

/ *
* Retrieving font information. First, call cpdf_startGetFontInfo (pdf). Now
* call cpdf_numberFonts to return the number of fonts. For each font, call
* one or more of cpdf_getFontPage, cpdf_getFontName, cpdf_getFontType, and
* cpdf_getFontEncoding giving a serial number 0..<number of fonts> - 1 to

* return information. Finally, call cpdf_endGetFontInfo to clean up.
*/

void cpdf_startGetFontInfo (int);

int cpdf_numberFonts (void);

int cpdf_getFontPage (int);

char xcpdf_getFontName (int) ;

char xcpdf_getFontType (int);

char *cpdf_getFontEncoding (int);

void cpdf_endGetFontInfo (void);

/* cpdf_removeFonts (pdf) removes all font data from a file. =/
void cpdf_removeFonts (int);

/ *

* cpdf_copyFont (from, to, range, pagenumber, fontname) copies the given font
* from the given page in the 'from' PDF to every page in the 'to' PDF. The

+ new font is stored under its font name.

*/

void cpdf_copyFont (int, int, int, int, const charl[]);

Chapter 15

PDF and JSON

cpdf in.pdf -output-json -o out.json
[-output-json-parse-content-streams]
[-output—-json-no-stream-data]
[-output-json-decompress—-streams]
[-output-json-clean-strings]

cpdf -j in.json -o out.pdf

In addition to reading and writing PDF files in the original Adobe format, cpdf can read
and write them in its own CPDFJSON format, for somewhat easier extraction of information,
modification of PDF files, and so on.

15.1 Converting PDF to JSON

We convert a PDF file to JSON format like this:

cpdf -output-json in.pdf -o out.json

The resultant JSON file is an array of arrays containing an object number followed by an
object, one for each object in the file and two special ones:

* Object -1: CPDF’s own data with the PDF version number, CPDF JSON format number,
and flags used when writing (which may be required when reading):

/CPDFJSONformatversion (CPDFJSON integer (see below), currently 2)

/CPDFJSONcontentparsed (boolean, true if content streams have been parsed)

/CPDFJSONstreamdataincluded (boolean, true if stream data included. Cannot
round-trip if false).

/CPDFJSONma jorpdfversion (CPDFJSON integer)

101

102 Chapter 15. PDF and JSON

- /CPDFJSONminorpdfversion (CPDFJSON integer)

¢ Object 0: The PDF’s trailer dictionary
® Objects 1..n: The PDF’s objects.

Objects are formatted thus:

e PDF arrays, dictionaries, booleans, and strings are the same as in JSON.
¢ Integers are writtenas {"I": 0}

¢ Floats are writtenas {"F": 0.0}

e Names are written as {"N": "/Pages"}

* Indirect references are integers

e Streams are {"S": [dict, datal}

e Strings are converted to JSON string format in a way which, when reversed, results in the
original string.

Here is an example of the output for a small PDF:
(

-1,
"/CPDFJSONformatversion": { "I": 2 },
"/CPDFJSONcontentparsed": false,
"/CPDFJSONstreamdataincluded": true,
"/CPDFJSONmajorpdfversion": { "I": 1 },
"/CPDFJSONminorpdfversion": { "I": 1 } }

OI
{ "/Size": { "I": 4 }, "/Root": 4,
"/ID" : [<elided>, <elided>] } 1,

[

1, { "/Type": { "N": "/Pages" }, "/Kids": [3], "/Count": { "I": 1 } }
]I
[

2/

{"s": [{ "/Length": { "I": 49 } },

"1 001 50 770 cm BT/FO 36 Tf(Hello, World!)Tj ET"] }
1,
l

3, { "/Type": { "N": "/Page" }, "/Parent": 1,
"/Resources": {
"/Font": {
"/FO": {

"/Type" : { LB VAL "/Font" } ,

Chapter 15. PDF and JSON 103

"/Subtype": { "N": "/Typel" },
"/BaseFont": { "N": "/Times-Italic" }
}
}
}I
"/MediaBox":

[{ "I": O }, { "I": O },
{ "F": 595.2755905510001 }, { "F": 841.88976378 }],
"/Rotate": { "I": 0 },
"/Contents": [2 1 } 1,
[
4, { "/Type": { "N": "/Catalog" }, "/Pages": 1 }]
]

The option ~output-json-parse-content-streams will also convert content streams to
JSON, so our example content stream will be expanded:

2, |

ngw. [
{(r 0
[

{"p": 1.0}, { "F": 0.0}, { "F": 0.0 }, { "F": 1.0 1}, { "F": 50.0 }, {
"F": 770'0 }, "Cm"]’ ["BT" J’ [ll/FO", { "F": 36.0 }’ "Tf"], [
"Hello, World!", "T3" 1, ["ET"]]

Iy 1,1

The option —~output-json-no-stream-data simply elides the stream data instead, leading
to much smaller JSON files.

The option ~output-json-decompress-streams keeps the streams intact, and decom-
presses them.

The option ~output-json-clean-strings converts any UTF16BE strings with no high
bytes to PDFDocEncoding prior to output, so that editing them is easier.

15.2 Converting JSON to PDF

We can load a JSON PDF file with the - j option in place of a PDF file anywhere in a normal
cpdf command. A range may be applied, just like any other file.

cpdf -j in.json -o out.pdf

It is not required that /Length entries in CPDFJSON stream dictionaries be correctly
updated when the JSON file is edited: cpdf will fix them when loading.

104 Chapter 15. PDF and JSON

C Interface

/* CHAPTER 15. PDF and JSON =x/

/* cpdf_outputJSON (filename, parse_content, no_stream_data, pdf) outputs a PDF
* in JSON format to the given filename. If parse_content is true, page content
* 1s parsed. If no_stream_data is true, all stream data is suppressed entirely.
* o/

void cpdf_outputJSON (const char[], int, int, int, int);

/* cpdf_outputJSONMemory (parse_content, no_stream_data, pdf, &length) is like
* outputJSON, but it write to a buffer in memory. The length is filled in. =/
void xcpdf_outputJSONMemory (int, int, int, int, int x);

/* Load a PDF from a JSON file given its filename =/
int cpdf_fromJSON (const char[]);

/* Load a PDF from a JSON file in memory, given the buffer and its length x/
int cpdf_fromJSONMemory (void x, int);

Chapter 16

Optional Content Groups

cpdf -ocg-list in.pdf
cpdf -ocg-rename -ocg-rename—-from <a> -ocg-rename-to in.pdf -o out.pdf
cpdf -ocg-order-all in.pdf -o out.pdf

cpdf -ocg-coalesce-on-name in.pdf -o out.pdf

In a PDF file, optional content groups are used to group graphical elements together, so they
may appear or not, depending on the preference of the user. They are similar in some ways to
layers in graphics illustration programs.

cpdf -ocg-list in.pdf

List the optional content groups in the PDF, one per line, to standard output. UTES.

cpdf -ocg-rename -ocg-rename-from <a> -ocg-rename-to in.pdf -o out.pdf

Rename an optional content group.

cpdf -ocg-coalesce-on-name in.pdf -o out.pdf

Coalesce optional content groups. For example, if we merge or stamp two files both with
an OCG called “Layer 1”7, we will have two different optional content groups. Running
-ocg-coalesce-on-name will merge the two into a single optional content group.

cpdf -ocg-order-all in.pdf -o out.pdf

Ensure that every optional content group appears in the order list.

105

106 Chapter 16. Optional Content Groups

C Interface

/* CHAPTER 16. Optional Content Groups x/

/* Begin retrieving optional content group names. The serial number 0..<n - 1>
x is returned. */
int cpdf_startGetOCGList (int pdf);

/* Retrieve an OCG name, given its serial number 0..<n - 1>. x/
char xcpdf_OCGListEntry(int 1i);

/+ End retrieval of optional content group names. x/
void cpdf_endGetOCGList (void);

/* cpdf_OCGRename (pdf, from, to) will rename an optional content group. =*/
void cpdf_OCGRename (int, const char[], const charl[]);

/+ Ensure that every optional content group appears in the OCG order list. =*/
void cpdf_OCGOrderAll (int);

/+ Coalesce optional content groups. For example, if we merge or stamp two
* files both with an OCG called "Layer 1", we will have two different optional
* content groups. This function will merge the two into a single optional
x content group. */

void cpdf_OCGCoalesce (int);

Chapter 17

Creating New PDFs

cpdf —-create-pdf [-create-pdf-pages <n>]

[-create-pdf-papersize <paper size>] -o out.pdf
cpdf -typeset <text file> [-create-pdf-papersize <size>]
[-font] [-font-size <size>] -o out.pdf

17.1 A new blank PDF

We can build a new PDF file, given a number of pages and a paper size. The default is one page,
A4 portrait.

cpdf -create-pdf -create-pdf-pages 20
—create-pdf-papersize usletterportrait -o out.pdf

The standard paper sizes are listed in Section 3.1, or you may specify the width and height
directly, as described in the same chapter.

17.2 Convert a text file to PDF

A basic text to PDF convertor is included in cpdf. It takes a UTFS text file (ASCII is a subset
of UTF8) and typesets it ragged-right, splitting on whitespace. Both Windows and Unix line
endings are allowed.

cpdf -typeset file.txt -create-pdf-papersize a3portrait
—-font Courier -font-size 10 -o out.pdf

The standard paper sizes are listed in Section 3.1, or you may specify the width and height
directly, as described in the same chapter. The standard fonts are listed in chapter 8. The default
font is TimesRoman and the default size is 12.

107

108 Chapter 17. Creating New PDFs

C Interface

/* CHAPTER 17. Creating New PDFs */

/* cpdf_blankDocument (width, height, num_pages) creates a blank document with
* pages of the given width (in points), height (in points), and number of
* pages.

*/

int cpdf_blankDocument (double, double, int);

/ *

* cpdf_blankDocumentPaper (papersize, num_pages) makes a blank document given
* a page size and number of pages.

*/

int cpdf_blankDocumentPaper (enum cpdf_papersize, int);

/* cpdf_textToPDF (w, h, font, fontsize, filename) typesets a UTF8 text file
* ragged right on a page of size w * h in points in the given font and font
* size. x/

int cpdf_textToPDF (double, double, int, double, const charl(]);

/* cpdf_textToPDF (papersize font, fontsize, filename) typesets a UTF8 text file
* ragged right on a page of the given size in the given font and font size. x/
int cpdf_textToPDFPaper (int, int, double, const charl]);

Chapter 18

Miscellaneous

cpdf -draft [-boxes] [-draft-remove-only <n>] in.pdf [<range>] -o out.pdf
cpdf -remove-all-text in.pdf [<range>] -o out.pdf

cpdf -blacktext in.pdf [<range>] -o out.pdf

cpdf -blacklines in.pdf [<range>] -o out.pdf

cpdf -blackfills in.pdf [<range>] -o out.pdf

cpdf -thinlines <minimum thickness> in.pdf [<range>] -o out.pdf
cpdf -clean in.pdf -o out.pdf

cpdf -set-version <version number> in.pdf -o out.pdf

cpdf -copy-id-from source.pdf in.pdf -o out.pdf

cpdf -remove-id in.pdf -o out.pdf

cpdf -list-spot-colors in.pdf

cpdf -print-dict-entry <key> in.pdf

cpdf -remove-dict-entry <key> [-dict-entry-search <term>]
in.pdf -o out.pdf

cpdf -replace-dict-entry <key> -replace-dict-entry-value <value>
[-dict-entry-search <term>] in.pdf -o out.pdf

cpdf -remove-clipping [<range>] in.pdf -o out.pdf

18.1 Draft Documents

The -draft operation removes bitmap (photographic) images from a file, so that it can be
printed with less ink. Optionally, the ~boxes option can be added, filling the spaces left blank
with a crossed box denoting where the image was. This is not guaranteed to be fully visible
in all cases (the bitmap may be have been partially covered by vector objects or clipped in the
original). For example:

109

110 Chapter 18. Miscellaneous

cpdf -draft -boxes in.pdf -o out.pdf

To remove a single image only, specify ~draft-remove-only, giving the name of the im-
age obtained by a call to ~image-resolution as described in Section 13.2 and giving the
appropriate page. For example:

cpdf -draft -boxes —-draft-remove-only "/Iml" in.pdf 7 -o out.pdf

To remove text instead of images, use the ~remove-all-text operation:

cpdf —-remove-all-text in.pdf -o out.pdf

18.2 Blackening Text, Lines and Fills

Sometimes PDF output from an application (for instance, a web browser) has text in colors
which would not print well on a grayscale printer. The -blacktext operation blackens all text
on the given pages so it will be readable when printed.

This will not work on text which has been converted to outlines, nor on text which is part of
a form.

cpdf -blacktext in.pdf -o out.pdf

The -blacklines operation blackens all lines on the given pages.

cpdf -blacklines in.pdf -o out.pdf

The -blackfills operation blackens all fills on the given pages.

cpdf -blackfills in.pdf -o out.pdf

Contrary to their names, all these operations can use another color, if specified with —~color.

18.3 Hairline Removal

Quite often, applications will use very thin lines, or even the value of 0, which in PDF means
“The thinnest possible line on the output device”. This might be fine for on-screen work, but
when printed on a high resolution device, such as by a commercial printer, they may be too
faint, or disappear altogether. The ~thinlines operation prevents this by changing all lines
thinner than <minimal thickness> to the given thickness. For example:

Chapter 18. Miscellaneous 111

cpdf -thinlines 0.2mm in.pdf [<range>] -o out.pdf

Thicken all lines less than 0.2mm to that value.

18.4 Garbage Collection

Sometimes incremental updates to a file by an application, or bad applications can leave data in
a PDF file which is no longer used. This function removes that unneeded data.

cpdf -clean in.pdf -o out.pdf

18.5 Change PDF Version Number

To change the pdf version number, use the ~set-version operation, giving the part of the
version number after the decimal point. For example:

cpdf -set-version 4 in.pdf -o out.pdf

Change file to PDF 1.4.

This does not alter any of the actual data in the file — just the supposed version number. For
PDF versions starting with 2 add ten to the number. For example, for PDF version 2.0, use
-set-version 10.

18.6 Copy ID

The -copy-id-from operation copies the ID from the given file to the input, writing to the
output.

cpdf -copy-id-from source.pdf in.pdf -o out.pdf

Copy the id from source.pdf to the contents of in.pdf, writing to out . pdf.

If there is no ID in the source file, the existing ID is retained. You cannot use ~recrypt with
—copy—-id-from.

18.7 Remove ID

The —remove-id operation removes the ID from a document.

112 Chapter 18. Miscellaneous

cpdf -remove-id in.pdf -o out.pdf

Remove the ID from in.pdf, writing to out . pdf.

You cannot use -recrypt with —remove-id.

18.8 List Spot Colours

This operation lists the name of any “separation” color space in the given PDF file.

cpdf -list-spot-colors in.pdf

List the spot colors, one per line in in.pdf, writing to stdout.

18.9 PDF Dictionary Entries

This is for editing data within the PDF’s internal representation. Use with caution.
To print a dictionary entry:

cpdf -print-dict-entry /URI in.pdf -o out.pdf

Print all URLs in annotation hyperlinks in.pdf.

To remove a dictionary entry:

cpdf -remove-dict-entry /One in.pdf -o out.pdf
Remove the entry for /One in every dictionary in.pdf, writing to out . pdf.
cpdf -remove-dict—-entry /One -dict-entry-search "1" in.pdf -o out.pdf

Replace the entry for /One in every dictionary in.pdf if the key’s value is the given value, writing
to out . pdf.

To replace a dictionary entry:

cpdf -replace-dict-entry /One -replace-dict-entry-value "2"
in.pdf -o out.pdf

Remove the entry for /One in every dictionary in.pdf, writing to out . pdf.

cpdf -replace-dict-entry /One -dict-entry-search "1"
-replace-dict-entry-value "2" in.pdf -o out.pdf

Chapter 18. Miscellaneous 113

Remove the entry for /One in every dictionary in.pdf if the key’s value is the given value, writing
to out .pdf.

18.10 Removing Clipping

The ~remove-clipping operation removes any clipping paths on given pages from the file.

cpdf -remove-clipping in.pdf -o out.pdf

Remove clipping paths in in.pdf, writing to out . pdf.

114 Chapter 18. Miscellaneous

C Interface

/+* CHAPTER 18. Miscellaneous =*/

/*
* cpdf_draft (pdf, range, boxes) removes images on the given pages, replacing
* them with crossed boxes if 'boxes' is true
x/

void cpdf_draft (int, int, int);

/%
* cpdf_removeAllText (pdf, range) removes all text from the given pages in a
* given document.
x/

void cpdf_removeAllText (int, int);

/* cpdf_blackText (pdf, range) blackens all text on the given pages. */
void cpdf_blackText (int, int);

/* cpdf_blackLines (pdf, range) blackens all lines on the given pages. */
void cpdf_blackLines (int, int);

/* cpdf_blackFills (pdf, range) blackens all fills on the given pages. */
void cpdf_blackFills (int, int);

/%
* cpdf_thinLines (pdf, range, min_thickness) thickens every line less than
* min_thickness to min_thickness. Thickness given in points.
*/

void cpdf_thinLines (int, int, double);

/* cpdf_copyId(from, to) copies the /ID from one document to another. =/
void cpdf_copyId(int, int);

/* cpdf_removelId (pdf) removes a document's /ID. x/
void cpdf_removeId(int);

/* cpdf_setVersion (pdf, version) sets the minor version number of a document. =/
void cpdf_setVersion(int, int);

/+ cpdf_setFullVersion (pdf, major_version, minor_version) sets the full version
* number of a document. =*/
void cpdf_setFullVersion(int, int, int);

/%
* cpdf_removeDictEntry (pdf, key) removes any dictionary entry with the given
* key anywhere in the document.
*/

void cpdf_removeDictEntry (int, const char(]);

Chapter 18. Miscellaneous 115

/* cpdf_removeDictEntrySearch (pdf, key, seachterm) removes any dictionary entry
* with the given key whose value matches the given search term. x*/
void cpdf_removeDictEntrySearch(int, const char[], const char[]);

/* cpdf_replaceDictEntry (pdf, key, newvalue) replaces the value associated with
* the given key x/
void cpdf_replaceDictEntry(int, const char[], const charl]);

/* cpdf_replaceDictEntry (pdf, key, newvalue, searchterm) replaces the value
* associated with the given key if the existing value matches the search term.
*/

void cpdf_replaceDictEntrySearch(int, const char[], const char[], const char[]);

/* cpdf_getDictEntries (pdf, key, length) returns a JSON array containing any
+ and all values associated with the given key, and fills in its length. x/
void *cpdf_getDictEntries (int, const char[], int xretlen);

/ *

* cpdf_removeClipping (pdf, range) removes all clipping from pages in the
* given range.

*/

void cpdf_removeClipping(int, int);
/+ CHAPTER X. Internal or undocumented. =/

/* Internal. Used for demo versions of the commercial version of cpdflib. */
void cpdf_setDemo (int) ;

116 Chapter 18. Miscellaneous

Appendix A

Dates

A.1 PDF Date Format

Dates in PDF are specified according to the following format:

D:YYYYMMDDHHmmSSOHH "mm'

where:
® YYYY is the year;
e MM is the month;
* DD is the day (01-31);
e HH is the hour (00-23);
¢ mm is the minute (00-59);
e 35 is the second (00-59);
* 0 is the relationship of local time to Universal Time (UT), denoted by "+, "-" or 'Z’;
* HH is the absolute value of the offset from UT in hours (00-23);

* mm is the absolute value of the offset from UT in minutes (00-59).

A contiguous prefix of the parts above can be used instead, for lower accuracy dates. For
example:

D:2014 (2014)
D:20140103 (3rd January 2014)

117

118 Appendix A. Dates

D:201401031854-08'00" (3rd January 2014, 6:54PM, US Pacific Standard Time)

A.2 XMP Metadata Date Format

These are the possible data formats for —~set-metadata-date:

YYYY

YYYY-MM

YYYY-MM-DD
YYYY-MM-DDThh :mmTZD
YYYY-MM-DDThh:mm:ssTZD

where:
YYYY year
MM month (01 = Jan)

DD day of month (01 to 31)

hh hour (00 to 23)

mm minute (00 to 59)

ss second (00 to 59)

TZD time zone designator (Z or +hh:mm or ~hh: :mm)

Index

AND, 5 print entry, 112
annotations remove entry, 112
copying, 70 replace entry, 112
listing, 69 document information, 73
removing, 70 document outline, 41
attachments, 87 draft, 109
adding, 87 '
dumping to file, 88 encryption, 21, 33
listing, 87 error handling, 9
removing, 88]
fileID, 6
bates numbers, 55 copy, 111
blacken remove, 111
fills, 110 flip pages, 26
lines, 110 font, 56
text, 110 embedding, 10
blank pages listing, 95
inserting, 65 print table for, 96
bookmarks, 41 .
adding, 43 garbage collection, 111
listing, 41

¢ hairline removal, 110
opening at level, 44

removing, 43 imposition, 66
input files, 1

collation, 20 input range, 2

color, 57
compressing, 37 JSON, 101
control file, 9 add bookmarks from, 41
Create, 107 input from, 101
create new PDF, 107 list annotations as, 69
creator, 6 list bookmarks as, 41
crop pages, 26 output to, 101
date, 54 linearization, 6

defined, 117
decompressing, 37 malformed file, 8
decryption, 3, 33 media box, 26
dictionary merging, 19

119

120

metadata, 73
XMP, 76

object stream, 7

Optional Content Group, 105
outline text, 58

output files, 1

owner password, 3

page
duplicate, 3
labels, 78
layout, 76
mode, 77
numbers, 55
range, 2
size, 24
pages
collate, 20
password, 3
presentations, 49
printer’s marks, 28
producer, 6

range, 2
removing text, 54
reversing, 2
rotate
contents, 26
pages, 25

scale pages, 24
shift page contents, 25
splitting, 20

on bookmarks, 20
spot colour, 112
squeeze, 38
stamp text, 54
standard input, 4
standard output, 4

text
convert to PDF, 107
encodings, 10

time, 54

trim marks, 28

two-up, 66

units, 5
user password, 3

version number, 6, 111
watermarks, 53

XMP metadata, 76

Index

	1 Basic Usage
	1.1 Documentation
	1.2 Input and Output Files
	1.3 Input Ranges
	1.4 Working with Encrypted Documents
	1.5 Standard Input and Standard Output
	1.6 Doing Several Things at Once with AND
	1.7 Units
	1.8 Setting the Producer and Creator
	1.9 PDF Version Numbers
	1.10 File IDs
	1.11 Linearization
	1.12 Object Streams
	1.13 Malformed Files
	1.14 Error Handling
	1.15 Control Files
	1.16 String Arguments
	1.17 Text Encodings
	1.18 Font Embedding

	2 Merging and Splitting
	2.1 Merging
	2.2 Splitting
	2.3 Splitting on Bookmarks
	2.4 Encrypting with Split and Split Bookmarks

	3 Pages
	3.1 Page Sizes
	3.2 Scale Pages
	3.3 Shift Page Contents
	3.4 Rotating Pages
	3.5 Flipping Pages
	3.6 Boxes and Cropping
	3.7 Showing Boxes and Printer's Marks

	4 Encryption and Decryption
	4.1 Introduction
	4.2 Encrypting a Document
	4.3 Decrypting a Document

	5 Compression
	5.1 Decompressing a Document
	5.2 Compressing a Document
	5.3 Squeezing a Document

	6 Bookmarks
	6.1 List Bookmarks
	6.1.1 Destinations

	6.2 Remove Bookmarks
	6.3 Add Bookmarks
	6.4 Opening bookmarks
	6.5 Making a Table of Contents

	7 Presentations
	8 Watermarks and Stamps
	8.1 Add a Watermark or Logo
	8.2 Stamp Text, Dates and Times.
	8.2.1 Page Numbers
	8.2.2 Date and Time Formats
	8.2.3 Bates Numbers
	8.2.4 Position
	8.2.5 Font and Size
	8.2.6 Colors
	8.2.7 Outline Text
	8.2.8 Multi-line Text
	8.2.9 Special Characters

	8.3 Stamping Graphics
	8.4 Low-level facilities

	9 Multipage Facilities
	9.1 Inserting Blank Pages
	9.2 Imposition

	10 Annotations
	10.1 Listing Annotations
	10.2 Copying Annotations
	10.3 Removing Annotations

	11 Document Information and Metadata
	11.1 Reading Document Information
	11.2 Setting Document Information
	11.3 XMP Metadata
	11.4 Upon Opening a Document
	11.4.1 Page Layout
	11.4.2 Page Mode
	11.4.3 Display Options

	11.5 Page Labels

	12 File Attachments
	12.1 Adding Attachments
	12.2 Listing Attachments
	12.3 Removing Attachments
	12.4 Dumping Attachments to File

	13 Working with Images
	13.1 Extracting images
	13.2 Detecting Low-resolution Images
	13.3 Removing an Image

	14 Fonts
	14.1 Listing Fonts
	14.2 Listing characters in a font
	14.3 Copying Fonts
	14.4 Removing Fonts
	14.5 Missing Fonts

	15 PDF and JSON
	15.1 Converting PDF to JSON
	15.2 Converting JSON to PDF

	16 Optional Content Groups
	17 Creating New PDFs
	17.1 A new blank PDF
	17.2 Convert a text file to PDF

	18 Miscellaneous
	18.1 Draft Documents
	18.2 Blackening Text, Lines and Fills
	18.3 Hairline Removal
	18.4 Garbage Collection
	18.5 Change PDF Version Number
	18.6 Copy ID
	18.7 Remove ID
	18.8 List Spot Colours
	18.9 PDF Dictionary Entries
	18.10 Removing Clipping

	A Dates
	A.1 PDF Date Format
	A.2 XMP Metadata Date Format

