HOPR - a Decentralized and Metadata-Private
Messaging Protocol with Incentives

Dr. Sebastian Biirgel, Robert Kiel

November 2019, V1

1 Introduction

The Web3 comprises a range of technologies that enable truly decentralized ap-
plications (dApps) featuring increased privacy and resilience for the next wave
of web applications. dApps on the Web3 do not rely on central infrastructure
with central points of failure but instead support self-custody of wealth and
data. Beyond technical innovation, the Web3 ecosystems strives to innovate the
business and organizational status quo of today’s web2.0. Are rent-seeking for-
profit corporations with shareholder meetings and CEOs the only possible way
to generate value for users? Are shareholders necessarily the only financial ben-
eficiaries of a project while most work and value might be community-created?
The ICO wave of 2017 has not just created an alternative funding scheme for
high risk early investments via tokens but also led to an increasing number of
projects that aspire to the Web3 vision and build its infrastructure. HOPR, be-
lieves in that privacy-first, decentralized and self-empowering Web3 vision and
delivers a privacy foundation for the Web3.

1.1 Pillars of the web3

While several components of the web3 are still heavily in the making, some
projects are already today giving a glimpse of that future web architecture.
Early examples working towards dApps are decentralized organizations (DAOs,
e.g. by Aragon), social media platforms such as Akasha or financial products
like Maker’s DAI or non-custodial trading venues like Uniswap. Currently, we
see technological pillars emerging that enable developers to build true dApps
which do not rely on central infrastructure anymore:

e Financial asset management systems enabled by blockchains such as Ethe-
reum or ZCash

e Data storage solutions like Filecoin or NuCypher

e Computation providers like Golem or Enigma


http://gavwood.com/web3lt.html
https://www.forbes.com/sites/chancebarnett/2017/09/23/inside-the-meteoric-rise-of-icos/#76ac96d15670
https://aragon.org
https://akasha.world
https://makerdao.com/en/dai
https://uniswap.exchange
https://ethereum.org/
https://ethereum.org/
https://z.cash/
https://filecoin.io/
https://www.nucypher.com/
https://golem.network/
https://enigma.co

1.2 The web3 stack

In this new ecosystem, multiple decentralized applications (dApps) interact with
one another as well as with these core technologies. All pillars feature projects
that focus on privacy within that domain. For example, we see on-chain pri-
vacy solutions such as AZTEC and MatterLabs on Ethereum or ZCash, private
data storage by re-encryption in NuCypher and privacy-preserving computa-
tion in Enigma. At the same time, the ecosystem is lacking a go-to solution
for network-level privacy enabling communication between separate networks,
applications and users. Some dApps make use of Whisper which is developed
by the Ethereum community but which - similar to other broadcast schemes -
suffers from scalability restrictions when used for point-to-point communication
and unclear delivery behavior. We build HOPR as a metadata-private commu-
nication foundation for the Web3 and the web of today. As such, HOPR solves
the privacy fallacy of end-to-end encryption that we see in today’s web appli-
cations: While the encrypted message itself might not be accessible to third
parties, metadata such as "Who are you talking to?”, ”How often are you talk-
ing to them?”, ”From where?”, ” At what time?”, ”How many and long messages
do you exchange?” and more, are leaking and accessible to various third parties
including wifi-providers, internet service providers, device manufacturers and
other low-level hard- and software vendors.

dApps
Assets Storage Computation
Bitcoin, ZCash, tokens IPFS, NuCypher Golem, Enigma
Messaging
HOPR

1.3 Protocol layers of the web3

HOPR fills the gap between peer-to-peer (P2P) networks and dApps that ex-
change sensitive information. It adds metadata privacy on top of an existing
P2P layer that is used in form of libp2p or WebRTC in decentralized architec-
tures today. It is compatible with underlying network protocols such as TCP /IP
or QUIC. Depending on the application, one layer above HOPR could be an op-
tional storage / sync layer like Matrix which then enables e.g. chat application
with longer-term message caching.


https://www.aztecprotocol.com
http://matterlabs.dev
https://github.com/ethereum/wiki/wiki/Whisper
https://libp2p.io/
https://en.wikipedia.org/wiki/WebRTC
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/QUIC
https://matrix.org/

Layer Purpose Example

Chat app,

Application Application logic M2M comms

Synchronization of data,
Storage / sync version management, Matrix
medium-term message caching
Scalable & decentralized
metadata protection,
Privacy incentivization for HOPR
packet relayers,
short-term caching

Overlay routing,
NAT traversal

Underlay routing,
congestion control

P2P libp2p, WebRTC

Network TCP/IP, QUIC

In the blockchain world, HOPR complements technologies that provide on-
chain privacy. Data packets produced by dApps may not just contain valuable
data but may also reveal metadata that can be linked to real-world identities.
On-chain privacy, for example, is of limited impact if a network observer can
link metadata to a social media account in order to attack the person because of
the fact that they used privacy-preserving financial networks - without knowing
what exactly they used them for.

2 Architecture Overview

The HOPR protocol outlined in this paper comprises various modules which are
detailed in later sections. A reference implementation of the HOPR protocol
is the HOPR node software. A first version of the HOPR node is written in
Javascript / NodeJS to optimize for time to release and a steep learning curve.
At a later time, a more efficient and secure implementation, possibly written
in Rust, will be provided. The HOPR node comprises a core module of the
payment and message layer as well as a REST-JSON API which is interfaced
either directly or via libraries by applications that run on top of HOPR.

Application CLI / UI

APIs & libraries

HOPR Message layer Payment layer

Infrastructure libp2p Ethereum




HOPR provides privacy by relaying packets from sender via multiple relay
hops who receive a payment for their services to the recipient. The message
layer presented in section 3 ensures security, integrity and metadata privacy of
the data packet as it is sent from the sender via relay hops to the recipient. It is
based on libp2p and thus supports various lower-level transport modules such
as TCP, WebRT'C, WebSocket or UDP. The payment layer detailed in section 4
allows relay nodes to get paid for providing privacy for sender and recipient in a
fashion that does not expose critical metadata about the packet. The payment
happens via deterministic micropayment channels outlined in section 5. These
payment channels are interfacing an existing public ledger, the current proof-of-
concept implementation relies on the main Ethereum blockchain. The fairness of
this payment mechanism relies on our Proof-of-Relay secret sharing mechanism
described in section 6. Many of these processes rely on cryptographic keys, the
derivation of which is discussed in section 7. The payments that are carried out
between nodes in the HOPR network are performed in HOPR tokens which is
introduced in section 8.

3 Message Layer

Each relay node is caching packets for a customizable duration, mixes their
ordering before passing them on to the next downstream relay node (or recip-
ient) so that packets are hard to link for an outside observer. In addition to
this mixnet functionality, HOPR leverages onion encryption: Each packet is
encrypted by the sender multiple times such that only the chosen relay nodes
can decrypt it, read the next destination and pass on the payload which now
has one onion encryption layer less. This does not only increase security by re-
quiring all nodes and the recipient to decrypt the plain-text message but it also
makes incoming and outgoing packages indistinguishable for a passive observer.
Beyond traditional onion routing, HOPR packets do not only contain informa-
tion of where to send the packet but also contain a payment. The payment is
credited for the node that successfully relaid the packet to the next downstream
node in a privacy-preserving fashion.

4 Payment Layer

HOPR nodes get paid for their privacy-enabling packet relay services via cus-
tomized payment channels. In contrast to on-chain (layer 1) payments, payment
channels have a number of properties that make them particularly suitable for
the purpose of paying for privacy-preserving network traffic:

1. Cheap: Opening and closing payment channels are the only on-chain in-
teractions that cost transaction fees. All intermediate update transactions
are exchanged in a P2P fashion without incurring settlement fees.

2. Fast: After opening a payment channel, update transactions are not
slowed down by the consensus layer (blockchain) as these transactions



are signed off between both parties of the payment channel. Thus, the
transaction throughput is decoupled from the blockchain and only limited
by minimal processing and network latencies.

3. Minimal counter-party risk: Either side of the payment channel can
choose to close the channel at any time. However, the counter-party has
some time to provide proof to the smart contract that they have a later
update transaction with the signature of the other side. This allows each
party to always settle on the latest balance on-chain. If the discrepancy
between the closing transaction and the actual balance is less than the
transaction fee of the closing transaction (gas) then it is not economically
rational to send the later update transaction. This counter-party risk is
however limited to the cost of the closing transaction which is a few cents
today on the public Ethereum chain.

4. Minimal public metadata: Since payments are not settled on-chain on
a packet-by-packet basis but in bulk, the metadata is limited to the bulk
information of how heavily a certain route in the network was used, e.g.
on a monthly basis or whatever settlement interval the parties choose.
Importantly, no linking between individual packets and payments, time or
path is possible.

Traditional payment channel implementations such as those used by Raiden
are having a number of shortcomings that HOPR improves upon. Specifically,
HOPR requires a payment channel architecture that allows for the following:

1. Pay for relaying: Relayer should not be able to get paid for non-existing
messages, i.e. they should not cheat the upstream node from which they
receive the payment. This means that the payment and package delivery
needs to be tightly coupled and one payment needs to be submitted per
packet.

2. Proof of relay: Relayer should not be able to get paid unless they have
actually forwarded the package to the next downstream node. This re-
quires cooperation between the receiving relayer and the next downstream
node. Only upon confirmation of the next downstream node should the
relayer receive their payment.

3. Partial payout: Relayer should not be unduly punished for not being
able to relay a package to the next downstream node. I.e. while they
should not be able to get the corresponding payment for the packet that
is thus lost, they should be able to get paid for the remainder of the
successfully delivered packets.

4. Efficient settlement: The relayer should have an efficient means of clos-
ing the payment channel. They cannot be required to submit individual
proofs for each packet that they relayed as the on-chain transaction fees
would be prohibitively high for relaying millions of packets.


http://raiden.network

4.1 Pay for Relaying

HOPR overcomes the limitations mentioned above by embedding a customized
payment channels. The update transaction of the payment channel is embedded
in the header of a packet. The payment is, however, not redeemable for the
receiving relayer without cooperation of the next downstream node. Consider
the following example:

Alice is the sender of a private message and chooses a route via Bob and
Charlie who are both relayers to Dave as the recipient.

In this case Alice will pay the entire amount for both relayers (Bob and
Charlie) to Bob. Bob now needs to forward part of the payment (and the
packet) to Charlie in order to get his payment. Charlie in turn needs to deliver
the message to Dave in order to get her payment.

5 Probabilistic Micropayments
6 Proof-of-Relay

Alice employs a secret sharing mechanism so that Bob will only get Alice’s
payment when he delivered the message to Charlie. Charlie, in turn, only
receives her payment from Bob with the cooperation of Dave. The mechanism
relies on a secret sharing and elliptic curve multiplications as a cryptographic
one-way function. Bob receives the curve point S which Alice (sender of a
message) computed as S = s*G where x denotes an elliptic curve multiplication
and G is the base point of the curve. Bob also receives the public key half .S
from Alice. He can then obtain the message secret key half s, from intermediate
key material in the SPHINX message header. Bob will relay the entire packet
to Charlie and in return he will receive the second half of the message secret
key s, back from Charlie. After Charlie passes the second key-half s, to Bob,
Bob can compute the message secret key s = s, + s, where + denotes addition
over a finite field of the elliptic curve. After Bob relayed N transactions from
Alice and also got all the key-halves from the next downstream node, he can
thus submit the sum of all secrets siorqr = Zf;o Sia+ Sip= 21]‘\]:0 s; to release
his payments.

In order to prevent Bob from faking s;,tq; and thereby extracting a larger
amount from a payment channel than he should, a signature is required from
Alice, similar to traditional payment channel implementations. Therefore, every
update transaction from Alice contains a signature over Siorai = Stotal * G. Now
the smart contract

e ensures validity of the signature of Siorq from Alice sig(Stotar, Alice)
e ensures validity of the pre-image Siotar = Stotar * G and

o facilitates the payout for the successfully delivered packages.



6.1 Partial Payout and Efficient Settlement

In reality, not all packages are successfully delivered. As a consequence, Bob
misses some s, from the packet that got lost or for which the downstream relay
node was not responsive. In turn, Bob is not able to submit a correct soa;
matching the corresponding Siotq; for which he has a valid signature from Alice.

For settlement of payment channels for which not all packages have been
successfully delivered, a partial settlement needs to be available. Assume that
for a total of N packages, the first X were successfully delivered and the last
Y failed so that N = X + Y, ordering of successful and unsuccessful messages
is irrelevant and only serves as a simple example. In analogy to the above we
then have

Y Y
Ssuccess — Ei:O Si,a + Sip = Zizo Sis
Sfail = ZﬁyX Si,a + Sip = ZZ:JS/X Si,
success — Ssuccess * G;

Stail = Spait x G

Bob can calculate sgyccess in order to get the corresponding payout for each of
those X successfully delivered packages. He then needs to submit the remainder
Stai for which he will not receive a payout such that Alice’s signature can be
validated.

Then the smart contract:

e ensures validity of the signature of Siotq from Alice sig(Stotar, Alice)
e ensures validity of the pre-image Siotal = Ssuccess * G + Stait

o facilitates a payout for successfully delivered packages corresponding to

Ssuccess

7 Key Derivation

The key halves s, and s, are derived via the HKDF key derivation function
which is based on HMAC-SHA256. The input key material (IKM) is obtained
from the SPHINX packet header and different salt values are used for the dif-
ferent types of keys (e.g. sq or sp).

The sender of a packet (Alice in the example above) generates a secret pseudo
random number z;, which she then turns into a curve point X;, = ¢g®to. This al-
lows Bob to derive the input key material I KM = (Xp,)%. Finally Bob can then
use this IKM to generate the different types of keys key = HKDF(IK M, salt).

The IKM can be derived both by Alice (from the left side of the equation
below) and also from Bob (from the right side in the equation below):

Bomho — (gbo)xbo — gmbo*bo — (gmho)bo — (Xbo)bo

xp, : Alice generates this (random number) and keeps it secret

bo: private key of Bob

By: pub key of Bob, Alice knows that

Xp,: This is what Alice stores in SPHINX header for Bob and from which
he derives the input key material


https://en.wikipedia.org/wiki/HKDF

(X, )b This is the input key material that Bob derives with his private
key

8 HOPR Token
9 Objectives

The HOPR team engaged with various contributors and organizations in the
blockchain and web3 ecosystem to establish the objectives towards a decentral-
ized and privacy-preserving communication protocol. In the following sections
we detail how the identified objectives are being addressed by HOPR.

9.1 Ensuring metadata protection

The HOPR message layer comprises a Chaumian mixnet. As such, no node in
the network and no passive observer can tell if a certain node was sender or
relayer of a message. Likewise, they cannot tell if a particular node was receiver
or relayer of a message. This works as long as sender, relayer and recipient are
subject to sufficient traffic so that they can mix their packets into the existing
background packet traffic. As several nodes are relaying the traffic between
sender and receiver, it is hard to link the two and thus establish who is talking
to who.

The payment channels that HOPR leverages on the payment layer, are not
settled on-chain after every packet and thus privacy that was established by
the message layer is maintained by the payment layer. The channels between
sender-relayer, multiple relayers and between relayer and recipient are settled
infrequently, e.g. on a monthly basis, and therefore make it difficult to link
payment- and message layer activities. Relayers can choose when they want to
settle, they might choose to do so frequently in order to have a constant revenue
but on the other hand they would not settle too often as that comes at the cost
of on-chain transaction fees. In addition, when settling for a very low number
of relayed packets (worst case is all relayers of a path are settling after just one
single packet) closing the payment channel might leak some information about
the path along which a certain packet was routed. To prevent this and guarantee
sufficient privacy, a certain amount of traffic should be routed along the relay
nodes that are chosen for a particular packet before the corresponding payment
channels are settled. It is the task of the sender of a packet to choose a route
via relay nodes that fulfill such conditions which are also deemed sufficiently
trustworthy. As trust might be subjective, HOPR does not impose a strategy
for establishing a path and instead allows the sender to choose relay nodes.

Objectives that HOPR achieves:
1. Sender anonymity (who sent a message?)

2. Receiver anonymity (who read a message?)


https://medium.com/web3foundation/messaging-for-web-3-0-building-an-anonymous-messaging-protocol-e29db72f4d19
https://medium.com/web3foundation/messaging-for-web-3-0-building-an-anonymous-messaging-protocol-e29db72f4d19

3. Sender-receiver unlinkability (who is talking to whom?)

9.2 Convenience, Usability

HOPR does not make assumptions about latency or anonymity and instead
lets applications define these parameters. Higher latency provides for more
efficient mixing of packets and thus increased anonymity but might not be suit-
able for all applications (e.g. instant messaging needs lower latencies than e.g.
email services). The SPHINX packet format that HOPR utilizes provides for
high anonymity guarantees and at the same time contains overhead bandwidth.
While traffic through HOPR will be significantly slower than direct communi-
cation due to the involvement of intermediate relay hops as well as additional
artificial latencies to mix packets, the throughput of HOPR should allow for
reasonable bandwidth to at least send several Kilobytes of traffic per second
per sender. The payment layer aims at implementing efficient cryptography so
that even low-energy devices are capable of sending, relaying and receiving traf-
fic. Therefore, HOPR does not involve cryptographic building blocks that are
currently en vogue in various web3 projects such as zk-SNARKSs or trusted exe-
cution environments which require heavy computational resources or specialized
hardware that is unlikely to be found in e.g. low-power internet-of-things (IoT)
devices that need a metadata-private machine-to-machine (M2M) communica-
tion protocol.

Objectives that HOPR achieves:

4. Reasonable latency (under 5 seconds, to allow for instant messaging)

5. Reasonable bandwidth (not specified, ability to work with mobile data
plan in undeveloped countries)

6. Adaptable anonymity (adjustable pricing and resource consumption de-
pending on how anonymous you want to be)

9.3 Decentralization

HOPR is a decentralized network without central points of failure and it allows
anyone to join and use the services. It specifically does not rely on mailbox
providers or other trusted parties. The message layer does require some on-
chain activities for opening or closing/settling payment channels but existing
public blockchains today (e.g. Ethereum) are easily capable of handling traffic
of up to 1M nodes which would lead to several million transactions per month
which arise from a few channel open and channel close transactions per node.

Objectives that HOPR achieves:
7. Scalable (up to approx. 1M active nodes)

8. No specialized service providers (pure peer-to-peer protocol)



9.4 Incentives

The payment layer is an integral part of HOPR and provides incentives for
relayers to get paid in proportion to the number of packets that they relayed.
The payment layer is detailed in depth in a later section.

Objectives that HOPR achieves:

9. Incentivization for relayers

10 Future Work

HOPR is by no means complete and there are still various aspects that need
further thought, design and implementation work. This section lists the known
limitations that need further significant work.

10.1 Get amount from payment channel

We need to find out not just that S was correct but also how much money was
associated with it. An approach based on polynomials should work but needs
to be defined in more details.

10.2 Economics

Make sure everyone gets sufficiently incentivized and disincentivize bad behavior
(and define what that exactly is, e.g. lots of dropped packages, spam, etc).
How much does one packet cost? We are envisioning a dynamic fee pricing
that is updated, e.g. every 10 days. Similarly to the Ethereum block gas limit
adjustment, relayers that did settle channels within that time frame get a vote
on the fee. Maybe it is better to have a general token-based voting, not just for
the relayers.

10.3 Cover Traffic

We plan to finance cover traffic through an inflationary token model. However,
delivering this cover traffic needs to be specified. At first it might be done by
HOPR AG, later it might be fully decentralized with path establishment in TEE
without leaking information and without ability to cheat.

10.4 QoS / Slashing

If nodes are not online or do not want to support an upstream node then they
should get punished by slashing some of their staked funds. Potentially an
extra amount needs to be staked separate from the channels to ensure that all
connected parties get their unsettled channel funds even if the counter-party got
slashed. However, the upstream node should not be able to troll the downstream

10



node with attempting to slash them although they are online. The downstream
node should have a way to respond to such on-chain accusations. One way to
reach fairness might be to slash both nodes half of the normal slashing amount
in case the downstream node does respond within some time frame. This time
frame should be short so that nodes cannot be offline for e.g. one day without
getting punished but also cannot be too short (e.g. one minute) so that a
transaction did not get mined in time.

10.5 On-Demand NAT traversal

Currently we are routing all traffic between nodes via the bootstrap node to
be on the safe side. This does not significantly decrease privacy as HOPR is
resistant against passive observers but it is a waste of resources and adds latency
unnecessarily. Instead, nodes should detect when STUN or TURN is required
and use some other HOPR node in reach as a relay server. That relay service
might at a later time also be incentivized.

10.6 Tooling & Documentation
We need minimally:

e HOPR management GUI, probably web-based running on localhost simi-
lar to IPFS

e public analytics website of public data (showing channels open/close, cover
traffic, some DHT data etc)

e REST JSON API

e JS wrapper library

e libraries in other languages
e tutorials

o detailed documentation

e an integrated example on the website

11



	Introduction
	Pillars of the web3
	The web3 stack
	Protocol layers of the web3

	Architecture Overview
	Message Layer
	Payment Layer
	Pay for Relaying

	Probabilistic Micropayments
	Proof-of-Relay
	Partial Payout and Efficient Settlement

	Key Derivation
	HOPR Token
	Objectives
	Ensuring metadata protection
	Convenience, Usability
	Decentralization
	Incentives

	Future Work
	Get amount from payment channel
	Economics
	Cover Traffic
	QoS / Slashing
	On-Demand NAT traversal
	Tooling & Documentation


