9.LED Grid Module: Program the 8X8 Grid with
Different Formulas

Remark: Signature:

We have created a series of Raspberry Pi Tutorials, in which we have covered Interfacing of
Raspberry Pi with all the basic components like LED, LCD, button, DC motor, Servo Motor,
Stepper Motor, ADC, shift
Register, etc. We have
also published some
simple Raspberry Pi
projects for beginners,
along with some good loT
projects. Today, in
continuation of these
tutorials, we are going to
Control the 8x8 LED
Matrix Module by
Raspberry Pi. We will
write a python program to
show characters on the
matrix module.

!

Components Required:

Here we are using Raspberry Pi 2 Model B with Raspbian Jessie OS. All the basic
Hardware and Software requirements are previously discussed, you can look it up in the
Raspberry Pi Introduction and Raspberry Pl LED Blinking for getting started, other than
that we need:

Raspberry Pi Board

Power supply (5v)

1000uF capacitor (connected across power supply)
1KQ resistor (8 pieces)

8x8 LED Matrix Module:

An 8*8 LED matrix module contains 64 LED
(Light Emitting Diodes) which are arranged in
the form of a matrix, hence the name is LED
matrix. These compact modules are available
in different sizes and many colors. One can
choose them based on convenience. The PIN
configuration of the module is as shown in
the picture. Keep in mind that the pinouts of
modules are not in order so the PINs should
be numbered exactly as shown in the picture
for avoiding errors.

There are 8+8=16 common terminals in the

LED Matrix module. Over them, we have 8

common positive terminals and 8 common negative terminals, in the form of 8 rows and 8
columns, for connecting 64 LEDs in

matrix form. If the module were to be 1 2 ¢ b ¢
drawn in the form of circuit diagram

we will have a picture as shown

below: p

......

D1s % D18
e D24
e e
(v 1] ox

o9 % D40

pp s
a7 D4
i e

Positive Terminals (9, 14, 8, 12, 17, 2,

5). Consider the first row, the LEDs 8
from D1 to D8 have a common
positive terminal and the pin is .

So for 8 rows, we have 8 Common N %)- %)

brought out at PIN9 of the LED °
Matrix module. When we want one y

or all LEDs in a ROW to be ON, The ° i

............

corresponding pin of LED MODULE
should be powered with +3.3v. °

......

Similar to common positive terminals, o
we have 8 Common Negative

Terminals as columns (13, 3, 4, 10, 6, :
11, 15, 16). For grounding any LED in

any column the respective common
negative terminal to be grounded.

ey i

g
I e | e e e e e e

Circuit Explanation:

The connections which are done between Raspberry Pi and LED matrix module are
shown in the below table.

LED Matrix Module Pin Function Raspberry Pi GPIO Pin
no. No.

13 POSITIVEO GPIO12

3 POSITIVE1 GP1022
4 POSITIVE2 GPI027
10 POSITIVE3 GPIO25
6 POSITIVE4 GPIO17
11 POSITIVES GPI024
15 POSITIVEG GPIO23
16 POSITIVE7 GPIO18
9 NEGATIVEO GPIO21
14 NEGATIVE1L GPI1020
8 NEGATIVE2 GPI026
12 NEGATIVE3 GPIO16
1 NEGATIVE4 GPIO19
7 NEGATIVES GPIO13
2 NEGATIVEG GPIO6

5 NEGATIVE7 GPIO5

Working Explanation:

Here we will use Multiplexing Technique to show characters on the 8x8 LED Matrix
Module. So let’s discuss this multiplexing in detail. Say if we want to turn on LED D10 in

the matrix, we need to power the PIN14 of the module and ground the PIN3 of the
module. With this LED D10 will turn ON as shown in below figure. This should also be
checked first for MATRIX to know everything is in order.

As told we will turn ON one row in an instant,

1" 15

i
o o E’?
b
=3 %}
:
I
;
¢

D8
i

-
&
9=t
o %) %;esu_.
o
#=¢
b
9=

024

oxx

(o] o7 o9

D42 D45

iE

D53

O
e

Lo Feloforereoreete-

At t=0m SEC, PINQO9 is set HIGH (other ROW pins are LOW at this time) at this
time,PIN3,PIN4,PIN10,PIN6,PIN11,PIN15 are grounded(other COLUMN pins are HIGH at
this time)

At t=1m SEC, PIN14 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN4,PIN10,PIN6,PIN11,PIN15,PIN16 are grounded(other COLUMN pins are
HIGH at this time)

At t=2m SEC, PINO8 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN15,PIN16 are grounded(other COLUMN pins are HIGH at this time)

At t=3m SEC, PIN12 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN15,PIN16 are grounded(other COLUMN pins are HIGH at this time)

At t=4m SEC, PINO1 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN4,PIN10,PIN6,PIN11,PIN15,PIN16 are grounded(other COLUMN pins are
HIGH at this time)

At t=bm SEC, PINO7 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN4,PIN10,PIN6,PIN11,PIN15,PIN16 are grounded(other COLUMN pins are
HIGH at this time)

At t=6m SEC, PINO2 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN15,PIN16 are grounded(other COLUMN pins are HIGH at this time)

At t=7m SEC, PINO5 is set HIGH (other ROW pins are LOW at this time)at this time,
PIN13,PIN3,PIN15,PIN16 are grounded(other COLUMN pins are HIGH at this time)

At this speed, the display will be seen as continuously showing “A” character as shown in
figure.

The Python Program for showing Characters on LED Matrix using Raspberry Pi is given
below. The program is well explained by comments. Port Values for each character are
given in the program. You can show whatever characters you want by just changing the
‘pinp’ values in the ‘for loops’ in the given program. Also check the Demo Video below.

Code

import RPi.GPIO as IO #calling for header file which helps in using GPIO’s of PI
import time #calling for time to provide delays in program

|O.setwarnings(False) #do not show any warnings
x=1
y=1

|0.setmode (I0.BCM) #programming the GPIO by BCM pin numbers. (like PIN29
as'GPIObY")

[0.setup(12,10.0UT) ¢#initialize GPIO12 as an output.
0.setup(22,10.0UT) #initialize GPIO22 as an output.
10.setup(27,10.0UT)
10.setup(25,10.0UT)
10.setup(17,10.0UT)
10.setup(24,10.0UT)

|0.setup(23,10.0UT)

10.setup(18,10.0UT)
0.setup(21,10.0UT)
10.setup(20,l0.0UT)
10.setup(26,I0.0UT)
10.setup(16,/10.0UT)
0.setup(19,10.0UT)
10.setup(13,10.0UT)
10.setup(6,/0.0UT)
10.setup(5,0.0UT)

PORTVALUE =[128,64,32,16,8,4,2,1]

#tvalue of pin in each port
A=[0,0b01111111,0b11111111,0b11001100,0b11001100,0b11001100,0b11111111,0

pb01111111]
B=[0,0b00111100,0b01111110,0b11011011,0b11011011,0b11011011,0b11111111,0
b11111111]
C=[0,0b11000011,0b11000011,0b11000011,0b11000011,0b11100111,0b01111110,0
b00111100]
D=[0,0b01111110,0b10111101,0pb11000011,0pb11000011,0p11000011,0b11111111,0
b11111111]
E=[0,0b11011011,0b11011011,0b11011011,0b11011011,0b11011011,0p11111111,0
b11111111]
F=[0,0b11011000,0b11011000,0p11011000,0p11011000,0b11011000,0b11111111,0
b11111111]
G=[0b00011111,0b11011111,0b11011000,0b11011011,0b11011011,0p11011011,0b1
1111111,0b11111111]
H=[0,0b11111111,0b11111111,0b00011000,0b00011000,0b00011000,0b11111111,0
b11111111]
|I=[0b11000011,0b11000011,0b11000011,0b11111111,0pb11111111,0b11000011,0b1
1000011,0b11000011]
J=[0b11000000,0b11000000,0b11000000,0b11111111,0p11111111,0p11000011,0b1
1001111,0p11001111]
K=[0,0b11000011,0p11100111,0b01111110,0b00111100,0b00011000,0b11111111,0
b11111111]
L=[0b00000011,0b00000011,0b00000011,0b00000011,0p00000011,0p00000011,0b1
1111111,0p11111111]
M=[0b11111111,0b11111111,0b01100000,0b01110000,0b01110000,0b01100000,0b
11111111,0b11111111]

N=[0b11111111,0b11111111,0b00011100,0b00111000,0b01110000,0b11100000,0b1
1111111,0p11111111]

0=[0b01111110,0b11111111,0b11000011,0b11000011,0b11000011,0pb11000011,0b
11111111,0pb01111110]
P=[0,0b01110000,0b11111000,0b11001100,0b11001100,0b11001100,0b11111111,0
b11111111]
Q=[0b01111110,0b11111111,0b11001111,0b11011111,0b11011011,0p11000011,0b
11111111,0pb01111110]
R=[0b01111001,0b11111011,0b11011111,0b11011110,0b11011100,0b11011000,0b1
1111111,0b11111111]
S=[0b11001110,0b11011111,0b11011011,0b11011011,0p11011011,0b11011011,0b1
1111011,0b01110011]
T=[0b11000000,0b11000000,0b11000000,0pb11111111,0b11111111,0b11000000,0b1
1000000,0b11000000]
U=[0b11111110,0b11111111,0b00000011,0b00000011,0b00000011,0b00000011,0b1
1111111,0b11111110]
V=[0b11100000,0b11111100,0b00011110,0b00000011,0b00000011,0b00011110,0b1
1111100,0b11100000]
W=[0b11111110,0b11111111,0b00000011,0p11111111,0b11111111,0b00000011,0b
11111111,0b11111110]
X=[0b01000010,0b11100111,0b01111110,0p00111100,0b00111100,0pb01111110,0b1
1100111,0p01000010]
Y=[0b01000000,0b11100000,0b01110000,0b00111111,0pb00111111,0b01110000,0b1
1100000,0b01000000]
Z=[0b11000011,0b11100011,0p11110011,0b11111011,0b11011111,0p11001111,0b1
1000111,0b11000011]

def PORT(pin): #assigning GPIO state by taking 'pin' value

if(pin&0x01 == 0x01):

0.output(21,0) #if bitO of 8bit 'pin' is true pull PIN21 low
else:

[O.output(21,1) #if bitO of 8bit 'pin'is false pull PIN21 high
if(pin&0x02 == 0x02):

10.0utput(20,0) #if bitl of 8bit 'pin'is true pull PIN20 low
else:

[0.output(20,1) #if bitl of 8bit 'pin'is false pull PIN20 high
if(pin&0x04 == 0x04):

10.0utput(26,0) #if bit2 of 8bit 'pin' is true pull PIN26 low
else:

[0.output(26,1) #if bit2 of 8bit 'pin'is false pull PIN26 high
if(pin&0x08 == 0x08):

10.output(16,0)
else:

0.output(16,1)

if(pin&0x10 == 0x10):

10.output(19,0)
else:

0.0output(19,1)

if(pin&0x20 == 0x20):

[O.output(13,0)
else:

[O.output(13,1)
if(pin&0x40 == 0x40):

1O.output(6,0)
else:

|0.output(6,1)
if(pin&0x80 == 0x80):

1O.output(5,0)
else:

[0.output(5,1)

def PORTP(pinp): #assigning GPIO logic for positive terminals by taking 'pinp' value

if(pinp&0x01 == 0x01):

[O.output(12,1) #if bitO of 8bit 'pinp' is true pull PIN12 high
else:

I0.output(12,0) #if bitO of 8bit 'pinp' is false pull PIN12 low
if(pinp&0x02 == 0x02):

[O.output(22,1) #if bitl of 8bit 'pinp' is true pull PIN22 high
else:

I0.output(22,0) #if bitl of 8bit 'pinp' is false pull PIN22 low
if(pinp&0x04 == 0x04):

O.output(27,1) #if bit2 of 8bit 'pinp' is true pull PIN27 high
else:

I0.output(27,0) #if bit2 of 8bit 'pinp' is false pull PIN27 low
if(pinp&0x08 == 0x08):

0.output(25,1)
else:

10.output(25,0)
if(pinp&0x10 == 0x10):

0.output(17,1)
else:

0.output(17,0)
if(pinp&0x20 == 0x20):

0.output(24,1)
else:

10.output(24,0)
if(pinp&0x40 == 0x40):

0.output(23,1)
else:

10.output(23,0)
if(pinp&0x80 == 0x80):

[O.output(18,1) #if bit7 of 8bit 'pinp' is true pull PIN18 high
else:

10.output(18,0) #if bit7 of 8bit 'pinp' is false pull PIN18 low

while 1:

for y in range (100): #execute loop 100 times

for x in range (8): #execute the loop 8 times incrementing x value from zero to seven

pin = PORTVALUE([x] #assigning value to 'pin' for each digit
PORT (pin); #mapping appropriate GPIO
pinp= C[x] #assigning character 'C' value to 'pinp'
PORTP(pinp); #turning the GPIO to show character 'C'
time.sleep(0.0005) #wait for 0.5msec
for y in range (100):
for x in range (8):
pin = PORTVALUE([x]
PORT (pin);
pinp= I[x]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE([x]
PORT (pin);
pinp= R[X]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE(x]
PORT (pin);
pinp= C[x]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE([X]
PORT (pin);
pinp= U[x]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE([x]
PORT (pin);
pinp= I[x]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE([x]
PORT (pin);
pinp= T[x]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):

for x in range (8):
pin = PORTVALUE(x]
PORT (pin);
pinp= D[X]
PORTP(pinp);
time.sleep(0.0005)

for y in range (100):

for x in range (8):
pin = PORTVALUE[x]
PORT (pin);
pinp= I[x]
PORTP(pinp);
time.sleep(0.0005)

for y in range (100):

for x in range (8):
pin = PORTVALUE[x]
PORT (pin);
pinp= G[x]
PORTP(pinp);
time.sleep(0.0005)

for y in range (100):
for x in range (8):
pin = PORTVALUE([x]
PORT (pin);
pinp= E[X]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE([x]
PORT (pin);
pinp= S[x]
PORTP(pinp);
time.sleep(0.0005)
for y in range (100):
for x in range (8):
pin = PORTVALUE[x]
PORT (pin);
pinp= T[x]
PORTP(pinp);
time.sleep(0.0005)
pinp= 0
PORTP(pinp);
time.sleep(1)

10

