Code coverage report for src/geometry/LineUtil.js

Statements: 100% (81 / 81)      Branches: 94% (47 / 50)      Functions: 100% (11 / 11)      Lines: 100% (81 / 81)     

All files » src/geometry/ » LineUtil.js
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203              1           3 1     2     2     2   2         1       1           2       2   2   2     2 10 7       2         8     8 10   10 8 8       8 3   3 3           2   2 9 7 7     2 1   2             3           3   3   7 2   5 1     4       4 2 2   2 2             8         8 3 5 1 4 3 1 1         16   16 1 15 3   16 1 15 4     16         9   9         22             22 22   22 6 6 16 14 14       22 22   22      
/*
 * L.LineUtil contains different utility functions for line segments
 * and polylines (clipping, simplification, distances, etc.)
 */
 
/*jshint bitwise:false */ // allow bitwise oprations for this file
 
L.LineUtil = {
 
	// Simplify polyline with vertex reduction and Douglas-Peucker simplification.
	// Improves rendering performance dramatically by lessening the number of points to draw.
 
	simplify: function (/*Point[]*/ points, /*Number*/ tolerance) {
		if (!tolerance || !points.length) {
			return points.slice();
		}
 
		var sqTolerance = tolerance * tolerance;
 
		// stage 1: vertex reduction
		points = this._reducePoints(points, sqTolerance);
 
		// stage 2: Douglas-Peucker simplification
		points = this._simplifyDP(points, sqTolerance);
 
		return points;
	},
 
	// distance from a point to a segment between two points
	pointToSegmentDistance:  function (/*Point*/ p, /*Point*/ p1, /*Point*/ p2) {
		return Math.sqrt(this._sqClosestPointOnSegment(p, p1, p2, true));
	},
 
	closestPointOnSegment: function (/*Point*/ p, /*Point*/ p1, /*Point*/ p2) {
		return this._sqClosestPointOnSegment(p, p1, p2);
	},
 
	// Douglas-Peucker simplification, see http://en.wikipedia.org/wiki/Douglas-Peucker_algorithm
	_simplifyDP: function (points, sqTolerance) {
 
		var len = points.length,
		    ArrayConstructor = typeof Uint8Array !== undefined + '' ? Uint8Array : Array,
		    markers = new ArrayConstructor(len);
 
		markers[0] = markers[len - 1] = 1;
 
		this._simplifyDPStep(points, markers, sqTolerance, 0, len - 1);
 
		var i,
		    newPoints = [];
 
		for (i = 0; i < len; i++) {
			if (markers[i]) {
				newPoints.push(points[i]);
			}
		}
 
		return newPoints;
	},
 
	_simplifyDPStep: function (points, markers, sqTolerance, first, last) {
 
		var maxSqDist = 0,
		    index, i, sqDist;
 
		for (i = first + 1; i <= last - 1; i++) {
			sqDist = this._sqClosestPointOnSegment(points[i], points[first], points[last], true);
 
			if (sqDist > maxSqDist) {
				index = i;
				maxSqDist = sqDist;
			}
		}
 
		if (maxSqDist > sqTolerance) {
			markers[index] = 1;
 
			this._simplifyDPStep(points, markers, sqTolerance, first, index);
			this._simplifyDPStep(points, markers, sqTolerance, index, last);
		}
	},
 
	// reduce points that are too close to each other to a single point
	_reducePoints: function (points, sqTolerance) {
		var reducedPoints = [points[0]];
 
		for (var i = 1, prev = 0, len = points.length; i < len; i++) {
			if (this._sqDist(points[i], points[prev]) > sqTolerance) {
				reducedPoints.push(points[i]);
				prev = i;
			}
		}
		if (prev < len - 1) {
			reducedPoints.push(points[len - 1]);
		}
		return reducedPoints;
	},
 
	// Cohen-Sutherland line clipping algorithm.
	// Used to avoid rendering parts of a polyline that are not currently visible.
 
	clipSegment: function (a, b, bounds, useLastCode) {
		var codeA = useLastCode ? this._lastCode : this._getBitCode(a, bounds),
		    codeB = this._getBitCode(b, bounds),
 
		    codeOut, p, newCode;
 
		// save 2nd code to avoid calculating it on the next segment
		this._lastCode = codeB;
 
		while (true) {
			// if a,b is inside the clip window (trivial accept)
			if (!(codeA | codeB)) {
				return [a, b];
			// if a,b is outside the clip window (trivial reject)
			} else if (codeA & codeB) {
				return false;
			// other cases
			} else {
				codeOut = codeA || codeB,
				p = this._getEdgeIntersection(a, b, codeOut, bounds),
				newCode = this._getBitCode(p, bounds);
 
				if (codeOut === codeA) {
					a = p;
					codeA = newCode;
				} else {
					b = p;
					codeB = newCode;
				}
			}
		}
	},
 
	_getEdgeIntersection: function (a, b, code, bounds) {
		var dx = b.x - a.x,
		    dy = b.y - a.y,
		    min = bounds.min,
		    max = bounds.max;
 
		if (code & 8) { // top
			return new L.Point(a.x + dx * (max.y - a.y) / dy, max.y);
		} else if (code & 4) { // bottom
			return new L.Point(a.x + dx * (min.y - a.y) / dy, min.y);
		} else if (code & 2) { // right
			return new L.Point(max.x, a.y + dy * (max.x - a.x) / dx);
		} else Eif (code & 1) { // left
			return new L.Point(min.x, a.y + dy * (min.x - a.x) / dx);
		}
	},
 
	_getBitCode: function (/*Point*/ p, bounds) {
		var code = 0;
 
		if (p.x < bounds.min.x) { // left
			code |= 1;
		} else if (p.x > bounds.max.x) { // right
			code |= 2;
		}
		if (p.y < bounds.min.y) { // bottom
			code |= 4;
		} else if (p.y > bounds.max.y) { // top
			code |= 8;
		}
 
		return code;
	},
 
	// square distance (to avoid unnecessary Math.sqrt calls)
	_sqDist: function (p1, p2) {
		var dx = p2.x - p1.x,
		    dy = p2.y - p1.y;
		return dx * dx + dy * dy;
	},
 
	// return closest point on segment or distance to that point
	_sqClosestPointOnSegment: function (p, p1, p2, sqDist) {
		var x = p1.x,
		    y = p1.y,
		    dx = p2.x - x,
		    dy = p2.y - y,
		    dot = dx * dx + dy * dy,
		    t;
 
		Eif (dot > 0) {
			t = ((p.x - x) * dx + (p.y - y) * dy) / dot;
 
			if (t > 1) {
				x = p2.x;
				y = p2.y;
			} else if (t > 0) {
				x += dx * t;
				y += dy * t;
			}
		}
 
		dx = p.x - x;
		dy = p.y - y;
 
		return sqDist ? dx * dx + dy * dy : new L.Point(x, y);
	}
};