Start Typing:
# Triangle Let the right triangle hypothenuse be aligned with the coordinate system *x-axis*. The vector loop closure equation then reads \[a{\bold e}_\alpha + b\tilde{\bold e}_\alpha + c{\bold e}_x = \bold 0\] (1) with \[{\bold e}_\alpha = \begin{pmatrix}\cos\alpha\\ \sin\alpha\end{pmatrix} \quad and \quad {\tilde\bold e}_\alpha = \begin{pmatrix}-\sin\alpha\\ \cos\alpha\end{pmatrix}\] Resolving for the hypothenuse part \(c{\bold e}_x\) in the loop closure equation (1) \[-c{\bold e}_x = a{\bold e}_\alpha + b\tilde{\bold e}_\alpha\] and squaring > finally results in the Pythagorean theorem (2) > > \[ c^2 = a^2 + b^2 \] (2)