Simplified version of the Sequential Minimal Optimization algorithm for training support vector machines

new SVM(options: {Object})
Parameters
options ({Object}) SVM options
Name Description
options.C [Number] (default 1) regularization parameter
options.tol [Number] (default 1e-4) numerical tolerance
options.alphaTol [Number] (default 1e-6) alpha tolerance, threshold to decide support vectors
options.maxPasses [Number] (default 10) max number of times to iterate over alphas without changing
options.maxIterations [Number] (default 10000) max number of iterations
options.kernel [String] (default linear) the kind of kernel. List of kernels
options.random [Function] (default Math.random) custom random number generator
Static Members
load(model)
Instance Members
train(features, labels)
predict(features)
margin(features)
supportVectors()
toJSON()