1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233 | 1×
1×
1×
1×
16927×
1×
19×
1×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
60×
1×
79×
79×
79×
79×
79×
79×
79×
1×
692×
692×
692×
692×
692×
692×
692×
1×
723×
723×
723×
723×
1×
5×
5×
5×
1×
33×
1×
21×
1×
7737×
7737×
7737×
7737×
7737×
7737×
7737×
7737×
7737×
1×
507×
507×
506×
506×
506×
506×
506×
506×
506×
506×
506×
506×
506×
506×
506×
1×
507×
| goog.provide('ol.transform');
goog.require('ol.asserts');
/**
* Collection of affine 2d transformation functions. The functions work on an
* array of 6 elements. The element order is compatible with the [SVGMatrix
* interface](https://developer.mozilla.org/en-US/docs/Web/API/SVGMatrix) and is
* a subset (elements a to f) of a 3x3 martrix:
* ```
* [ a c e ]
* [ b d f ]
* [ 0 0 1 ]
* ```
*/
/**
* @private
* @type {ol.Transform}
*/
ol.transform.tmp_ = new Array(6);
/**
* Create an identity transform.
* @return {!ol.Transform} Identity transform.
*/
ol.transform.create = function() {
return [1, 0, 0, 1, 0, 0];
};
/**
* Resets the given transform to an identity transform.
* @param {!ol.Transform} transform Transform.
* @return {!ol.Transform} Transform.
*/
ol.transform.reset = function(transform) {
return ol.transform.set(transform, 1, 0, 0, 1, 0, 0);
};
/**
* Multiply the underlying matrices of two transforms and return the result in
* the first transform.
* @param {!ol.Transform} transform1 Transform parameters of matrix 1.
* @param {!ol.Transform} transform2 Transform parameters of matrix 2.
* @return {!ol.Transform} transform1 multiplied with transform2.
*/
ol.transform.multiply = function(transform1, transform2) {
var a1 = transform1[0];
var b1 = transform1[1];
var c1 = transform1[2];
var d1 = transform1[3];
var e1 = transform1[4];
var f1 = transform1[5];
var a2 = transform2[0];
var b2 = transform2[1];
var c2 = transform2[2];
var d2 = transform2[3];
var e2 = transform2[4];
var f2 = transform2[5];
transform1[0] = a1 * a2 + c1 * b2;
transform1[1] = b1 * a2 + d1 * b2;
transform1[2] = a1 * c2 + c1 * d2;
transform1[3] = b1 * c2 + d1 * d2;
transform1[4] = a1 * e2 + c1 * f2 + e1;
transform1[5] = b1 * e2 + d1 * f2 + f1;
return transform1;
};
/**
* Set the transform components a-f on a given transform.
* @param {!ol.Transform} transform Transform.
* @param {number} a The a component of the transform.
* @param {number} b The b component of the transform.
* @param {number} c The c component of the transform.
* @param {number} d The d component of the transform.
* @param {number} e The e component of the transform.
* @param {number} f The f component of the transform.
* @return {!ol.Transform} Matrix with transform applied.
*/
ol.transform.set = function(transform, a, b, c, d, e, f) {
transform[0] = a;
transform[1] = b;
transform[2] = c;
transform[3] = d;
transform[4] = e;
transform[5] = f;
return transform;
};
/**
* Set transform on one matrix from another matrix.
* @param {!ol.Transform} transform1 Matrix to set transform to.
* @param {!ol.Transform} transform2 Matrix to set transform from.
* @return {!ol.Transform} transform1 with transform from transform2 applied.
*/
ol.transform.setFromArray = function(transform1, transform2) {
transform1[0] = transform2[0];
transform1[1] = transform2[1];
transform1[2] = transform2[2];
transform1[3] = transform2[3];
transform1[4] = transform2[4];
transform1[5] = transform2[5];
return transform1;
};
/**
* Transforms the given coordinate with the given transform returning the
* resulting, transformed coordinate. The coordinate will be modified in-place.
*
* @param {ol.Transform} transform The transformation.
* @param {ol.Coordinate|ol.Pixel} coordinate The coordinate to transform.
* @return {ol.Coordinate|ol.Pixel} return coordinate so that operations can be
* chained together.
*/
ol.transform.apply = function(transform, coordinate) {
var x = coordinate[0], y = coordinate[1];
coordinate[0] = transform[0] * x + transform[2] * y + transform[4];
coordinate[1] = transform[1] * x + transform[3] * y + transform[5];
return coordinate;
};
/**
* Applies rotation to the given transform.
* @param {!ol.Transform} transform Transform.
* @param {number} angle Angle in radians.
* @return {!ol.Transform} The rotated transform.
*/
ol.transform.rotate = function(transform, angle) {
var cos = Math.cos(angle);
var sin = Math.sin(angle);
return ol.transform.multiply(transform,
ol.transform.set(ol.transform.tmp_, cos, sin, -sin, cos, 0, 0));
};
/**
* Applies scale to a given transform.
* @param {!ol.Transform} transform Transform.
* @param {number} x Scale factor x.
* @param {number} y Scale factor y.
* @return {!ol.Transform} The scaled transform.
*/
ol.transform.scale = function(transform, x, y) {
return ol.transform.multiply(transform,
ol.transform.set(ol.transform.tmp_, x, 0, 0, y, 0, 0));
};
/**
* Applies translation to the given transform.
* @param {!ol.Transform} transform Transform.
* @param {number} dx Translation x.
* @param {number} dy Translation y.
* @return {!ol.Transform} The translated transform.
*/
ol.transform.translate = function(transform, dx, dy) {
return ol.transform.multiply(transform,
ol.transform.set(ol.transform.tmp_, 1, 0, 0, 1, dx, dy));
};
/**
* Creates a composite transform given an initial translation, scale, rotation, and
* final translation (in that order only, not commutative).
* @param {!ol.Transform} transform The transform (will be modified in place).
* @param {number} dx1 Initial translation x.
* @param {number} dy1 Initial translation y.
* @param {number} sx Scale factor x.
* @param {number} sy Scale factor y.
* @param {number} angle Rotation (in counter-clockwise radians).
* @param {number} dx2 Final translation x.
* @param {number} dy2 Final translation y.
* @return {!ol.Transform} The composite transform.
*/
ol.transform.compose = function(transform, dx1, dy1, sx, sy, angle, dx2, dy2) {
var sin = Math.sin(angle);
var cos = Math.cos(angle);
transform[0] = sx * cos;
transform[1] = sy * sin;
transform[2] = -sx * sin;
transform[3] = sy * cos;
transform[4] = dx2 * sx * cos - dy2 * sx * sin + dx1;
transform[5] = dx2 * sy * sin + dy2 * sy * cos + dy1;
return transform;
};
/**
* Invert the given transform.
* @param {!ol.Transform} transform Transform.
* @return {!ol.Transform} Inverse of the transform.
*/
ol.transform.invert = function(transform) {
var det = ol.transform.determinant(transform);
ol.asserts.assert(det !== 0, 32); // Transformation matrix cannot be inverted
var a = transform[0];
var b = transform[1];
var c = transform[2];
var d = transform[3];
var e = transform[4];
var f = transform[5];
transform[0] = d / det;
transform[1] = -b / det;
transform[2] = -c / det;
transform[3] = a / det;
transform[4] = (c * f - d * e) / det;
transform[5] = -(a * f - b * e) / det;
return transform;
};
/**
* Returns the determinant of the given matrix.
* @param {!ol.Transform} mat Matrix.
* @return {number} Determinant.
*/
ol.transform.determinant = function(mat) {
return mat[0] * mat[3] - mat[1] * mat[2];
};
|