1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254 | 1×
1×
1×
247×
247×
247×
247×
247×
247×
247×
247×
144×
103×
8×
18×
8×
8×
95×
239×
478×
239×
1×
7×
7×
7×
213×
213×
213×
213×
21×
213×
213×
7×
1×
1×
1×
11×
11×
11×
11×
11×
11×
247×
247×
247×
115×
115×
232×
115×
115×
132×
11×
11×
1×
1×
| goog.provide('ol.geom.flat.closest');
goog.require('ol.math');
/**
* Returns the point on the 2D line segment flatCoordinates[offset1] to
* flatCoordinates[offset2] that is closest to the point (x, y). Extra
* dimensions are linearly interpolated.
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset1 Offset 1.
* @param {number} offset2 Offset 2.
* @param {number} stride Stride.
* @param {number} x X.
* @param {number} y Y.
* @param {Array.<number>} closestPoint Closest point.
*/
ol.geom.flat.closest.point = function(flatCoordinates, offset1, offset2, stride, x, y, closestPoint) {
var x1 = flatCoordinates[offset1];
var y1 = flatCoordinates[offset1 + 1];
var dx = flatCoordinates[offset2] - x1;
var dy = flatCoordinates[offset2 + 1] - y1;
var i, offset;
Iif (dx === 0 && dy === 0) {
offset = offset1;
} else {
var t = ((x - x1) * dx + (y - y1) * dy) / (dx * dx + dy * dy);
if (t > 1) {
offset = offset2;
} else if (t > 0) {
for (i = 0; i < stride; ++i) {
closestPoint[i] = ol.math.lerp(flatCoordinates[offset1 + i],
flatCoordinates[offset2 + i], t);
}
closestPoint.length = stride;
return;
} else {
offset = offset1;
}
}
for (i = 0; i < stride; ++i) {
closestPoint[i] = flatCoordinates[offset + i];
}
closestPoint.length = stride;
};
/**
* Return the squared of the largest distance between any pair of consecutive
* coordinates.
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {number} end End.
* @param {number} stride Stride.
* @param {number} maxSquaredDelta Max squared delta.
* @return {number} Max squared delta.
*/
ol.geom.flat.closest.getMaxSquaredDelta = function(flatCoordinates, offset, end, stride, maxSquaredDelta) {
var x1 = flatCoordinates[offset];
var y1 = flatCoordinates[offset + 1];
for (offset += stride; offset < end; offset += stride) {
var x2 = flatCoordinates[offset];
var y2 = flatCoordinates[offset + 1];
var squaredDelta = ol.math.squaredDistance(x1, y1, x2, y2);
if (squaredDelta > maxSquaredDelta) {
maxSquaredDelta = squaredDelta;
}
x1 = x2;
y1 = y2;
}
return maxSquaredDelta;
};
/**
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array.<number>} ends Ends.
* @param {number} stride Stride.
* @param {number} maxSquaredDelta Max squared delta.
* @return {number} Max squared delta.
*/
ol.geom.flat.closest.getsMaxSquaredDelta = function(flatCoordinates, offset, ends, stride, maxSquaredDelta) {
var i, ii;
for (i = 0, ii = ends.length; i < ii; ++i) {
var end = ends[i];
maxSquaredDelta = ol.geom.flat.closest.getMaxSquaredDelta(
flatCoordinates, offset, end, stride, maxSquaredDelta);
offset = end;
}
return maxSquaredDelta;
};
/**
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array.<Array.<number>>} endss Endss.
* @param {number} stride Stride.
* @param {number} maxSquaredDelta Max squared delta.
* @return {number} Max squared delta.
*/
ol.geom.flat.closest.getssMaxSquaredDelta = function(flatCoordinates, offset, endss, stride, maxSquaredDelta) {
var i, ii;
for (i = 0, ii = endss.length; i < ii; ++i) {
var ends = endss[i];
maxSquaredDelta = ol.geom.flat.closest.getsMaxSquaredDelta(
flatCoordinates, offset, ends, stride, maxSquaredDelta);
offset = ends[ends.length - 1];
}
return maxSquaredDelta;
};
/**
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {number} end End.
* @param {number} stride Stride.
* @param {number} maxDelta Max delta.
* @param {boolean} isRing Is ring.
* @param {number} x X.
* @param {number} y Y.
* @param {Array.<number>} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @param {Array.<number>=} opt_tmpPoint Temporary point object.
* @return {number} Minimum squared distance.
*/
ol.geom.flat.closest.getClosestPoint = function(flatCoordinates, offset, end,
stride, maxDelta, isRing, x, y, closestPoint, minSquaredDistance,
opt_tmpPoint) {
Iif (offset == end) {
return minSquaredDistance;
}
var i, squaredDistance;
Iif (maxDelta === 0) {
// All points are identical, so just test the first point.
squaredDistance = ol.math.squaredDistance(
x, y, flatCoordinates[offset], flatCoordinates[offset + 1]);
if (squaredDistance < minSquaredDistance) {
for (i = 0; i < stride; ++i) {
closestPoint[i] = flatCoordinates[offset + i];
}
closestPoint.length = stride;
return squaredDistance;
} else {
return minSquaredDistance;
}
}
var tmpPoint = opt_tmpPoint ? opt_tmpPoint : [NaN, NaN];
var index = offset + stride;
while (index < end) {
ol.geom.flat.closest.point(
flatCoordinates, index - stride, index, stride, x, y, tmpPoint);
squaredDistance = ol.math.squaredDistance(x, y, tmpPoint[0], tmpPoint[1]);
if (squaredDistance < minSquaredDistance) {
minSquaredDistance = squaredDistance;
for (i = 0; i < stride; ++i) {
closestPoint[i] = tmpPoint[i];
}
closestPoint.length = stride;
index += stride;
} else {
// Skip ahead multiple points, because we know that all the skipped
// points cannot be any closer than the closest point we have found so
// far. We know this because we know how close the current point is, how
// close the closest point we have found so far is, and the maximum
// distance between consecutive points. For example, if we're currently
// at distance 10, the best we've found so far is 3, and that the maximum
// distance between consecutive points is 2, then we'll need to skip at
// least (10 - 3) / 2 == 3 (rounded down) points to have any chance of
// finding a closer point. We use Math.max(..., 1) to ensure that we
// always advance at least one point, to avoid an infinite loop.
index += stride * Math.max(
((Math.sqrt(squaredDistance) -
Math.sqrt(minSquaredDistance)) / maxDelta) | 0, 1);
}
}
Iif (isRing) {
// Check the closing segment.
ol.geom.flat.closest.point(
flatCoordinates, end - stride, offset, stride, x, y, tmpPoint);
squaredDistance = ol.math.squaredDistance(x, y, tmpPoint[0], tmpPoint[1]);
if (squaredDistance < minSquaredDistance) {
minSquaredDistance = squaredDistance;
for (i = 0; i < stride; ++i) {
closestPoint[i] = tmpPoint[i];
}
closestPoint.length = stride;
}
}
return minSquaredDistance;
};
/**
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array.<number>} ends Ends.
* @param {number} stride Stride.
* @param {number} maxDelta Max delta.
* @param {boolean} isRing Is ring.
* @param {number} x X.
* @param {number} y Y.
* @param {Array.<number>} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @param {Array.<number>=} opt_tmpPoint Temporary point object.
* @return {number} Minimum squared distance.
*/
ol.geom.flat.closest.getsClosestPoint = function(flatCoordinates, offset, ends,
stride, maxDelta, isRing, x, y, closestPoint, minSquaredDistance,
opt_tmpPoint) {
var tmpPoint = opt_tmpPoint ? opt_tmpPoint : [NaN, NaN];
var i, ii;
for (i = 0, ii = ends.length; i < ii; ++i) {
var end = ends[i];
minSquaredDistance = ol.geom.flat.closest.getClosestPoint(
flatCoordinates, offset, end, stride,
maxDelta, isRing, x, y, closestPoint, minSquaredDistance, tmpPoint);
offset = end;
}
return minSquaredDistance;
};
/**
* @param {Array.<number>} flatCoordinates Flat coordinates.
* @param {number} offset Offset.
* @param {Array.<Array.<number>>} endss Endss.
* @param {number} stride Stride.
* @param {number} maxDelta Max delta.
* @param {boolean} isRing Is ring.
* @param {number} x X.
* @param {number} y Y.
* @param {Array.<number>} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @param {Array.<number>=} opt_tmpPoint Temporary point object.
* @return {number} Minimum squared distance.
*/
ol.geom.flat.closest.getssClosestPoint = function(flatCoordinates, offset,
endss, stride, maxDelta, isRing, x, y, closestPoint, minSquaredDistance,
opt_tmpPoint) {
var tmpPoint = opt_tmpPoint ? opt_tmpPoint : [NaN, NaN];
var i, ii;
for (i = 0, ii = endss.length; i < ii; ++i) {
var ends = endss[i];
minSquaredDistance = ol.geom.flat.closest.getsClosestPoint(
flatCoordinates, offset, ends, stride,
maxDelta, isRing, x, y, closestPoint, minSquaredDistance, tmpPoint);
offset = ends[ends.length - 1];
}
return minSquaredDistance;
};
|