all files / ol/ reproj.js

81.52% Statements 75/92
77.78% Branches 14/18
85.71% Functions 6/7
81.52% Lines 75/92
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241                                   34×     34×     34× 34× 33×   34× 34× 33×             34× 34× 33×     33× 33×       34×                             2736× 2736× 2736×                                                 22×     22×       22×   22× 22× 29×     22× 22× 22×       22×   22× 29× 29× 29× 29×   29×               22×   22×                                         912× 912×     912×   912×   912×           912× 912× 912× 912× 912× 912× 912×   912×           912× 912×       912× 912× 912× 912× 912× 912×   912× 912× 912× 912×   912×     912×     912×     912× 912×     22×                                                 22×    
goog.provide('ol.reproj');
 
goog.require('ol.dom');
goog.require('ol.extent');
goog.require('ol.math');
goog.require('ol.proj');
 
 
/**
 * Calculates ideal resolution to use from the source in order to achieve
 * pixel mapping as close as possible to 1:1 during reprojection.
 * The resolution is calculated regardless of what resolutions
 * are actually available in the dataset (TileGrid, Image, ...).
 *
 * @param {ol.proj.Projection} sourceProj Source projection.
 * @param {ol.proj.Projection} targetProj Target projection.
 * @param {ol.Coordinate} targetCenter Target center.
 * @param {number} targetResolution Target resolution.
 * @return {number} The best resolution to use. Can be +-Infinity, NaN or 0.
 */
ol.reproj.calculateSourceResolution = function(sourceProj, targetProj,
    targetCenter, targetResolution) {
 
  var sourceCenter = ol.proj.transform(targetCenter, targetProj, sourceProj);
 
  // calculate the ideal resolution of the source data
  var sourceResolution =
      ol.proj.getPointResolution(targetProj, targetResolution, targetCenter);
 
  var targetMetersPerUnit = targetProj.getMetersPerUnit();
  if (targetMetersPerUnit !== undefined) {
    sourceResolution *= targetMetersPerUnit;
  }
  var sourceMetersPerUnit = sourceProj.getMetersPerUnit();
  if (sourceMetersPerUnit !== undefined) {
    sourceResolution /= sourceMetersPerUnit;
  }
 
  // Based on the projection properties, the point resolution at the specified
  // coordinates may be slightly different. We need to reverse-compensate this
  // in order to achieve optimal results.
 
  var sourceExtent = sourceProj.getExtent();
  if (!sourceExtent || ol.extent.containsCoordinate(sourceExtent, sourceCenter)) {
    var compensationFactor =
        ol.proj.getPointResolution(sourceProj, sourceResolution, sourceCenter) /
        sourceResolution;
    Eif (isFinite(compensationFactor) && compensationFactor > 0) {
      sourceResolution /= compensationFactor;
    }
  }
 
  return sourceResolution;
};
 
 
/**
 * Enlarge the clipping triangle point by 1 pixel to ensure the edges overlap
 * in order to mask gaps caused by antialiasing.
 *
 * @param {number} centroidX Centroid of the triangle (x coordinate in pixels).
 * @param {number} centroidY Centroid of the triangle (y coordinate in pixels).
 * @param {number} x X coordinate of the point (in pixels).
 * @param {number} y Y coordinate of the point (in pixels).
 * @return {ol.Coordinate} New point 1 px farther from the centroid.
 * @private
 */
ol.reproj.enlargeClipPoint_ = function(centroidX, centroidY, x, y) {
  var dX = x - centroidX, dY = y - centroidY;
  var distance = Math.sqrt(dX * dX + dY * dY);
  return [Math.round(x + dX / distance), Math.round(y + dY / distance)];
};
 
 
/**
 * Renders the source data into new canvas based on the triangulation.
 *
 * @param {number} width Width of the canvas.
 * @param {number} height Height of the canvas.
 * @param {number} pixelRatio Pixel ratio.
 * @param {number} sourceResolution Source resolution.
 * @param {ol.Extent} sourceExtent Extent of the data source.
 * @param {number} targetResolution Target resolution.
 * @param {ol.Extent} targetExtent Target extent.
 * @param {ol.reproj.Triangulation} triangulation Calculated triangulation.
 * @param {Array.<{extent: ol.Extent,
 *                 image: (HTMLCanvasElement|Image|HTMLVideoElement)}>} sources
 *             Array of sources.
 * @param {number} gutter Gutter of the sources.
 * @param {boolean=} opt_renderEdges Render reprojection edges.
 * @return {HTMLCanvasElement} Canvas with reprojected data.
 */
ol.reproj.render = function(width, height, pixelRatio,
    sourceResolution, sourceExtent, targetResolution, targetExtent,
    triangulation, sources, gutter, opt_renderEdges) {
 
  var context = ol.dom.createCanvasContext2D(Math.round(pixelRatio * width),
      Math.round(pixelRatio * height));
 
  Iif (sources.length === 0) {
    return context.canvas;
  }
 
  context.scale(pixelRatio, pixelRatio);
 
  var sourceDataExtent = ol.extent.createEmpty();
  sources.forEach(function(src, i, arr) {
    ol.extent.extend(sourceDataExtent, src.extent);
  });
 
  var canvasWidthInUnits = ol.extent.getWidth(sourceDataExtent);
  var canvasHeightInUnits = ol.extent.getHeight(sourceDataExtent);
  var stitchContext = ol.dom.createCanvasContext2D(
      Math.round(pixelRatio * canvasWidthInUnits / sourceResolution),
      Math.round(pixelRatio * canvasHeightInUnits / sourceResolution));
 
  var stitchScale = pixelRatio / sourceResolution;
 
  sources.forEach(function(src, i, arr) {
    var xPos = src.extent[0] - sourceDataExtent[0];
    var yPos = -(src.extent[3] - sourceDataExtent[3]);
    var srcWidth = ol.extent.getWidth(src.extent);
    var srcHeight = ol.extent.getHeight(src.extent);
 
    stitchContext.drawImage(
        src.image,
        gutter, gutter,
        src.image.width - 2 * gutter, src.image.height - 2 * gutter,
        xPos * stitchScale, yPos * stitchScale,
        srcWidth * stitchScale, srcHeight * stitchScale);
  });
 
  var targetTopLeft = ol.extent.getTopLeft(targetExtent);
 
  triangulation.getTriangles().forEach(function(triangle, i, arr) {
    /* Calculate affine transform (src -> dst)
     * Resulting matrix can be used to transform coordinate
     * from `sourceProjection` to destination pixels.
     *
     * To optimize number of context calls and increase numerical stability,
     * we also do the following operations:
     * trans(-topLeftExtentCorner), scale(1 / targetResolution), scale(1, -1)
     * here before solving the linear system so [ui, vi] are pixel coordinates.
     *
     * Src points: xi, yi
     * Dst points: ui, vi
     * Affine coefficients: aij
     *
     * | x0 y0 1  0  0 0 |   |a00|   |u0|
     * | x1 y1 1  0  0 0 |   |a01|   |u1|
     * | x2 y2 1  0  0 0 | x |a02| = |u2|
     * |  0  0 0 x0 y0 1 |   |a10|   |v0|
     * |  0  0 0 x1 y1 1 |   |a11|   |v1|
     * |  0  0 0 x2 y2 1 |   |a12|   |v2|
     */
    var source = triangle.source, target = triangle.target;
    var x0 = source[0][0], y0 = source[0][1],
        x1 = source[1][0], y1 = source[1][1],
        x2 = source[2][0], y2 = source[2][1];
    var u0 = (target[0][0] - targetTopLeft[0]) / targetResolution,
        v0 = -(target[0][1] - targetTopLeft[1]) / targetResolution;
    var u1 = (target[1][0] - targetTopLeft[0]) / targetResolution,
        v1 = -(target[1][1] - targetTopLeft[1]) / targetResolution;
    var u2 = (target[2][0] - targetTopLeft[0]) / targetResolution,
        v2 = -(target[2][1] - targetTopLeft[1]) / targetResolution;
 
    // Shift all the source points to improve numerical stability
    // of all the subsequent calculations. The [x0, y0] is used here.
    // This is also used to simplify the linear system.
    var sourceNumericalShiftX = x0, sourceNumericalShiftY = y0;
    x0 = 0;
    y0 = 0;
    x1 -= sourceNumericalShiftX;
    y1 -= sourceNumericalShiftY;
    x2 -= sourceNumericalShiftX;
    y2 -= sourceNumericalShiftY;
 
    var augmentedMatrix = [
      [x1, y1, 0, 0, u1 - u0],
      [x2, y2, 0, 0, u2 - u0],
      [0, 0, x1, y1, v1 - v0],
      [0, 0, x2, y2, v2 - v0]
    ];
    var affineCoefs = ol.math.solveLinearSystem(augmentedMatrix);
    Iif (!affineCoefs) {
      return;
    }
 
    context.save();
    context.beginPath();
    var centroidX = (u0 + u1 + u2) / 3, centroidY = (v0 + v1 + v2) / 3;
    var p0 = ol.reproj.enlargeClipPoint_(centroidX, centroidY, u0, v0);
    var p1 = ol.reproj.enlargeClipPoint_(centroidX, centroidY, u1, v1);
    var p2 = ol.reproj.enlargeClipPoint_(centroidX, centroidY, u2, v2);
 
    context.moveTo(p1[0], p1[1]);
    context.lineTo(p0[0], p0[1]);
    context.lineTo(p2[0], p2[1]);
    context.clip();
 
    context.transform(
        affineCoefs[0], affineCoefs[2], affineCoefs[1], affineCoefs[3], u0, v0);
 
    context.translate(sourceDataExtent[0] - sourceNumericalShiftX,
        sourceDataExtent[3] - sourceNumericalShiftY);
 
    context.scale(sourceResolution / pixelRatio,
        -sourceResolution / pixelRatio);
 
    context.drawImage(stitchContext.canvas, 0, 0);
    context.restore();
  });
 
  Iif (opt_renderEdges) {
    context.save();
 
    context.strokeStyle = 'black';
    context.lineWidth = 1;
 
    triangulation.getTriangles().forEach(function(triangle, i, arr) {
      var target = triangle.target;
      var u0 = (target[0][0] - targetTopLeft[0]) / targetResolution,
          v0 = -(target[0][1] - targetTopLeft[1]) / targetResolution;
      var u1 = (target[1][0] - targetTopLeft[0]) / targetResolution,
          v1 = -(target[1][1] - targetTopLeft[1]) / targetResolution;
      var u2 = (target[2][0] - targetTopLeft[0]) / targetResolution,
          v2 = -(target[2][1] - targetTopLeft[1]) / targetResolution;
 
      context.beginPath();
      context.moveTo(u1, v1);
      context.lineTo(u0, v0);
      context.lineTo(u2, v2);
      context.closePath();
      context.stroke();
    });
 
    context.restore();
  }
  return context.canvas;
};