1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | 1× 1× 1× 1× 4× 1× 1× 1× 1005× 1× 1× 1× 8× 8× 8× 8× 8× 8× 8× 8× 2× 4× 4× 4× 1× 1× 2× 1× 1× 1× 2× 1× 8× 1× 6× 6× 18× 6× 1× 1023× 1023× 1023× 1023× 1023× 1023× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 2× 2× 2× 2× 652× 652× 652× 652× 2× | /** * @license * Latitude/longitude spherical geodesy formulae taken from * http://www.movable-type.co.uk/scripts/latlong.html * Licensed under CC-BY-3.0. */ goog.provide('ol.Sphere'); goog.require('ol.math'); goog.require('ol.geom.GeometryType'); /** * @classdesc * Class to create objects that can be used with {@link * ol.geom.Polygon.circular}. * * For example to create a sphere whose radius is equal to the semi-major * axis of the WGS84 ellipsoid: * * ```js * var wgs84Sphere= new ol.Sphere(6378137); * ``` * * @constructor * @param {number} radius Radius. * @api */ ol.Sphere = function(radius) { /** * @type {number} */ this.radius = radius; }; /** * Returns the geodesic area for a list of coordinates. * * [Reference](https://trs-new.jpl.nasa.gov/handle/2014/40409) * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 * * @param {Array.<ol.Coordinate>} coordinates List of coordinates of a linear * ring. If the ring is oriented clockwise, the area will be positive, * otherwise it will be negative. * @return {number} Area. * @api */ ol.Sphere.prototype.geodesicArea = function(coordinates) { return ol.Sphere.getArea_(coordinates, this.radius); }; /** * Returns the distance from c1 to c2 using the haversine formula. * * @param {ol.Coordinate} c1 Coordinate 1. * @param {ol.Coordinate} c2 Coordinate 2. * @return {number} Haversine distance. * @api */ ol.Sphere.prototype.haversineDistance = function(c1, c2) { return ol.Sphere.getDistance_(c1, c2, this.radius); }; /** * Returns the coordinate at the given distance and bearing from `c1`. * * @param {ol.Coordinate} c1 The origin point (`[lon, lat]` in degrees). * @param {number} distance The great-circle distance between the origin * point and the target point. * @param {number} bearing The bearing (in radians). * @return {ol.Coordinate} The target point. */ ol.Sphere.prototype.offset = function(c1, distance, bearing) { var lat1 = ol.math.toRadians(c1[1]); var lon1 = ol.math.toRadians(c1[0]); var dByR = distance / this.radius; var lat = Math.asin( Math.sin(lat1) * Math.cos(dByR) + Math.cos(lat1) * Math.sin(dByR) * Math.cos(bearing)); var lon = lon1 + Math.atan2( Math.sin(bearing) * Math.sin(dByR) * Math.cos(lat1), Math.cos(dByR) - Math.sin(lat1) * Math.sin(lat)); return [ol.math.toDegrees(lon), ol.math.toDegrees(lat)]; }; /** * The mean Earth radius (1/3 * (2a + b)) for the WGS84 ellipsoid. * https://en.wikipedia.org/wiki/Earth_radius#Mean_radius * @type {number} */ ol.Sphere.DEFAULT_RADIUS = 6371008.8; /** * Get the spherical length of a geometry. This length is the sum of the * great circle distances between coordinates. For polygons, the length is * the sum of all rings. For points, the length is zero. For multi-part * geometries, the length is the sum of the length of each part. * @param {ol.geom.Geometry} geometry A geometry. * @param {olx.SphereMetricOptions=} opt_options Options for the length * calculation. By default, geometries are assumed to be in 'EPSG:3857'. * You can change this by providing a `projection` option. * @return {number} The spherical length (in meters). * @api */ ol.Sphere.getLength = function(geometry, opt_options) { var options = opt_options || {}; var radius = options.radius || ol.Sphere.DEFAULT_RADIUS; var projection = options.projection || 'EPSG:3857'; geometry = geometry.clone().transform(projection, 'EPSG:4326'); var type = geometry.getType(); var length = 0; var coordinates, coords, i, ii, j, jj; switch (type) { case ol.geom.GeometryType.POINT: case ol.geom.GeometryType.MULTI_POINT: { break; } case ol.geom.GeometryType.LINE_STRING: case ol.geom.GeometryType.LINEAR_RING: { coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates(); length = ol.Sphere.getLength_(coordinates, radius); break; } case ol.geom.GeometryType.MULTI_LINE_STRING: case ol.geom.GeometryType.POLYGON: { coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates(); for (i = 0, ii = coordinates.length; i < ii; ++i) { length += ol.Sphere.getLength_(coordinates[i], radius); } break; } case ol.geom.GeometryType.MULTI_POLYGON: { coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates(); for (i = 0, ii = coordinates.length; i < ii; ++i) { coords = coordinates[i]; for (j = 0, jj = coords.length; j < jj; ++j) { length += ol.Sphere.getLength_(coords[j], radius); } } break; } case ol.geom.GeometryType.GEOMETRY_COLLECTION: { var geometries = /** @type {ol.geom.GeometryCollection} */ (geometry).getGeometries(); for (i = 0, ii = geometries.length; i < ii; ++i) { length += ol.Sphere.getLength(geometries[i], opt_options); } break; } default: { throw new Error('Unsupported geometry type: ' + type); } } return length; }; /** * Get the cumulative great circle length of linestring coordinates (geographic). * @param {Array} coordinates Linestring coordinates. * @param {number} radius The sphere radius to use. * @return {number} The length (in meters). */ ol.Sphere.getLength_ = function(coordinates, radius) { var length = 0; for (var i = 0, ii = coordinates.length; i < ii - 1; ++i) { length += ol.Sphere.getDistance_(coordinates[i], coordinates[i + 1], radius); } return length; }; /** * Get the great circle distance between two geographic coordinates. * @param {Array} c1 Starting coordinate. * @param {Array} c2 Ending coordinate. * @param {number} radius The sphere radius to use. * @return {number} The great circle distance between the points (in meters). */ ol.Sphere.getDistance_ = function(c1, c2, radius) { var lat1 = ol.math.toRadians(c1[1]); var lat2 = ol.math.toRadians(c2[1]); var deltaLatBy2 = (lat2 - lat1) / 2; var deltaLonBy2 = ol.math.toRadians(c2[0] - c1[0]) / 2; var a = Math.sin(deltaLatBy2) * Math.sin(deltaLatBy2) + Math.sin(deltaLonBy2) * Math.sin(deltaLonBy2) * Math.cos(lat1) * Math.cos(lat2); return 2 * radius * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); }; /** * Get the spherical area of a geometry. This is the area (in meters) assuming * that polygon edges are segments of great circles on a sphere. * @param {ol.geom.Geometry} geometry A geometry. * @param {olx.SphereMetricOptions=} opt_options Options for the area * calculation. By default, geometries are assumed to be in 'EPSG:3857'. * You can change this by providing a `projection` option. * @return {number} The spherical area (in square meters). * @api */ ol.Sphere.getArea = function(geometry, opt_options) { var options = opt_options || {}; var radius = options.radius || ol.Sphere.DEFAULT_RADIUS; var projection = options.projection || 'EPSG:3857'; geometry = geometry.clone().transform(projection, 'EPSG:4326'); var type = geometry.getType(); var area = 0; var coordinates, coords, i, ii, j, jj; switch (type) { case ol.geom.GeometryType.POINT: case ol.geom.GeometryType.MULTI_POINT: case ol.geom.GeometryType.LINE_STRING: case ol.geom.GeometryType.MULTI_LINE_STRING: case ol.geom.GeometryType.LINEAR_RING: { break; } case ol.geom.GeometryType.POLYGON: { coordinates = /** @type {ol.geom.Polygon} */ (geometry).getCoordinates(); area = Math.abs(ol.Sphere.getArea_(coordinates[0], radius)); for (i = 1, ii = coordinates.length; i < ii; ++i) { area -= Math.abs(ol.Sphere.getArea_(coordinates[i], radius)); } break; } case ol.geom.GeometryType.MULTI_POLYGON: { coordinates = /** @type {ol.geom.SimpleGeometry} */ (geometry).getCoordinates(); for (i = 0, ii = coordinates.length; i < ii; ++i) { coords = coordinates[i]; area += Math.abs(ol.Sphere.getArea_(coords[0], radius)); for (j = 1, jj = coords.length; j < jj; ++j) { area -= Math.abs(ol.Sphere.getArea_(coords[j], radius)); } } break; } case ol.geom.GeometryType.GEOMETRY_COLLECTION: { var geometries = /** @type {ol.geom.GeometryCollection} */ (geometry).getGeometries(); for (i = 0, ii = geometries.length; i < ii; ++i) { area += ol.Sphere.getArea(geometries[i], opt_options); } break; } default: { throw new Error('Unsupported geometry type: ' + type); } } return area; }; /** * Returns the spherical area for a list of coordinates. * * [Reference](https://trs-new.jpl.nasa.gov/handle/2014/40409) * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 * * @param {Array.<ol.Coordinate>} coordinates List of coordinates of a linear * ring. If the ring is oriented clockwise, the area will be positive, * otherwise it will be negative. * @param {number} radius The sphere radius. * @return {number} Area (in square meters). */ ol.Sphere.getArea_ = function(coordinates, radius) { var area = 0, len = coordinates.length; var x1 = coordinates[len - 1][0]; var y1 = coordinates[len - 1][1]; for (var i = 0; i < len; i++) { var x2 = coordinates[i][0], y2 = coordinates[i][1]; area += ol.math.toRadians(x2 - x1) * (2 + Math.sin(ol.math.toRadians(y1)) + Math.sin(ol.math.toRadians(y2))); x1 = x2; y1 = y2; } return area * radius * radius / 2.0; }; |