all files / ol/ transform.js

100% Statements 84/84
100% Branches 0/0
100% Functions 12/12
100% Lines 84/84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233                                                     16927×                 19×                     60× 60× 60× 60× 60× 60× 60× 60× 60× 60× 60× 60×   60× 60× 60× 60× 60× 60×   60×                           79× 79× 79× 79× 79× 79× 79×                   692× 692× 692× 692× 692× 692× 692×                         723× 723× 723× 723×                                         33×                       21×                                   7737× 7737× 7737× 7737× 7737× 7737× 7737× 7737× 7737×                 507× 507×   506× 506× 506× 506× 506× 506×   506× 506× 506× 506× 506× 506×   506×                 507×    
goog.provide('ol.transform');
 
goog.require('ol.asserts');
 
 
/**
 * Collection of affine 2d transformation functions. The functions work on an
 * array of 6 elements. The element order is compatible with the [SVGMatrix
 * interface](https://developer.mozilla.org/en-US/docs/Web/API/SVGMatrix) and is
 * a subset (elements a to f) of a 3x3 martrix:
 * ```
 * [ a c e ]
 * [ b d f ]
 * [ 0 0 1 ]
 * ```
 */
 
 
/**
 * @private
 * @type {ol.Transform}
 */
ol.transform.tmp_ = new Array(6);
 
 
/**
 * Create an identity transform.
 * @return {!ol.Transform} Identity transform.
 */
ol.transform.create = function() {
  return [1, 0, 0, 1, 0, 0];
};
 
 
/**
 * Resets the given transform to an identity transform.
 * @param {!ol.Transform} transform Transform.
 * @return {!ol.Transform} Transform.
 */
ol.transform.reset = function(transform) {
  return ol.transform.set(transform, 1, 0, 0, 1, 0, 0);
};
 
 
/**
 * Multiply the underlying matrices of two transforms and return the result in
 * the first transform.
 * @param {!ol.Transform} transform1 Transform parameters of matrix 1.
 * @param {!ol.Transform} transform2 Transform parameters of matrix 2.
 * @return {!ol.Transform} transform1 multiplied with transform2.
 */
ol.transform.multiply = function(transform1, transform2) {
  var a1 = transform1[0];
  var b1 = transform1[1];
  var c1 = transform1[2];
  var d1 = transform1[3];
  var e1 = transform1[4];
  var f1 = transform1[5];
  var a2 = transform2[0];
  var b2 = transform2[1];
  var c2 = transform2[2];
  var d2 = transform2[3];
  var e2 = transform2[4];
  var f2 = transform2[5];
 
  transform1[0] = a1 * a2 + c1 * b2;
  transform1[1] = b1 * a2 + d1 * b2;
  transform1[2] = a1 * c2 + c1 * d2;
  transform1[3] = b1 * c2 + d1 * d2;
  transform1[4] = a1 * e2 + c1 * f2 + e1;
  transform1[5] = b1 * e2 + d1 * f2 + f1;
 
  return transform1;
};
 
/**
 * Set the transform components a-f on a given transform.
 * @param {!ol.Transform} transform Transform.
 * @param {number} a The a component of the transform.
 * @param {number} b The b component of the transform.
 * @param {number} c The c component of the transform.
 * @param {number} d The d component of the transform.
 * @param {number} e The e component of the transform.
 * @param {number} f The f component of the transform.
 * @return {!ol.Transform} Matrix with transform applied.
 */
ol.transform.set = function(transform, a, b, c, d, e, f) {
  transform[0] = a;
  transform[1] = b;
  transform[2] = c;
  transform[3] = d;
  transform[4] = e;
  transform[5] = f;
  return transform;
};
 
 
/**
 * Set transform on one matrix from another matrix.
 * @param {!ol.Transform} transform1 Matrix to set transform to.
 * @param {!ol.Transform} transform2 Matrix to set transform from.
 * @return {!ol.Transform} transform1 with transform from transform2 applied.
 */
ol.transform.setFromArray = function(transform1, transform2) {
  transform1[0] = transform2[0];
  transform1[1] = transform2[1];
  transform1[2] = transform2[2];
  transform1[3] = transform2[3];
  transform1[4] = transform2[4];
  transform1[5] = transform2[5];
  return transform1;
};
 
 
/**
 * Transforms the given coordinate with the given transform returning the
 * resulting, transformed coordinate. The coordinate will be modified in-place.
 *
 * @param {ol.Transform} transform The transformation.
 * @param {ol.Coordinate|ol.Pixel} coordinate The coordinate to transform.
 * @return {ol.Coordinate|ol.Pixel} return coordinate so that operations can be
 *     chained together.
 */
ol.transform.apply = function(transform, coordinate) {
  var x = coordinate[0], y = coordinate[1];
  coordinate[0] = transform[0] * x + transform[2] * y + transform[4];
  coordinate[1] = transform[1] * x + transform[3] * y + transform[5];
  return coordinate;
};
 
 
/**
 * Applies rotation to the given transform.
 * @param {!ol.Transform} transform Transform.
 * @param {number} angle Angle in radians.
 * @return {!ol.Transform} The rotated transform.
 */
ol.transform.rotate = function(transform, angle) {
  var cos = Math.cos(angle);
  var sin = Math.sin(angle);
  return ol.transform.multiply(transform,
      ol.transform.set(ol.transform.tmp_, cos, sin, -sin, cos, 0, 0));
};
 
 
/**
 * Applies scale to a given transform.
 * @param {!ol.Transform} transform Transform.
 * @param {number} x Scale factor x.
 * @param {number} y Scale factor y.
 * @return {!ol.Transform} The scaled transform.
 */
ol.transform.scale = function(transform, x, y) {
  return ol.transform.multiply(transform,
      ol.transform.set(ol.transform.tmp_, x, 0, 0, y, 0, 0));
};
 
 
/**
 * Applies translation to the given transform.
 * @param {!ol.Transform} transform Transform.
 * @param {number} dx Translation x.
 * @param {number} dy Translation y.
 * @return {!ol.Transform} The translated transform.
 */
ol.transform.translate = function(transform, dx, dy) {
  return ol.transform.multiply(transform,
      ol.transform.set(ol.transform.tmp_, 1, 0, 0, 1, dx, dy));
};
 
 
/**
 * Creates a composite transform given an initial translation, scale, rotation, and
 * final translation (in that order only, not commutative).
 * @param {!ol.Transform} transform The transform (will be modified in place).
 * @param {number} dx1 Initial translation x.
 * @param {number} dy1 Initial translation y.
 * @param {number} sx Scale factor x.
 * @param {number} sy Scale factor y.
 * @param {number} angle Rotation (in counter-clockwise radians).
 * @param {number} dx2 Final translation x.
 * @param {number} dy2 Final translation y.
 * @return {!ol.Transform} The composite transform.
 */
ol.transform.compose = function(transform, dx1, dy1, sx, sy, angle, dx2, dy2) {
  var sin = Math.sin(angle);
  var cos = Math.cos(angle);
  transform[0] = sx * cos;
  transform[1] = sy * sin;
  transform[2] = -sx * sin;
  transform[3] = sy * cos;
  transform[4] = dx2 * sx * cos - dy2 * sx * sin + dx1;
  transform[5] = dx2 * sy * sin + dy2 * sy * cos + dy1;
  return transform;
};
 
 
/**
 * Invert the given transform.
 * @param {!ol.Transform} transform Transform.
 * @return {!ol.Transform} Inverse of the transform.
 */
ol.transform.invert = function(transform) {
  var det = ol.transform.determinant(transform);
  ol.asserts.assert(det !== 0, 32); // Transformation matrix cannot be inverted
 
  var a = transform[0];
  var b = transform[1];
  var c = transform[2];
  var d = transform[3];
  var e = transform[4];
  var f = transform[5];
 
  transform[0] = d / det;
  transform[1] = -b / det;
  transform[2] = -c / det;
  transform[3] = a / det;
  transform[4] = (c * f - d * e) / det;
  transform[5] = -(a * f - b * e) / det;
 
  return transform;
};
 
 
/**
 * Returns the determinant of the given matrix.
 * @param {!ol.Transform} mat Matrix.
 * @return {number} Determinant.
 */
ol.transform.determinant = function(mat) {
  return mat[0] * mat[3] - mat[1] * mat[2];
};