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Abstract

We introduce a novel training principle for
probabilistic models that is an alternative to
maximum likelihood. The proposed Generative
Stochastic Networks (GSN) framework is based
on learning the transition operator of a Markov
chain whose stationary distribution estimates the
data distribution. The transition distribution of
the Markov chain is conditional on the previous
state, generally involving a small move, so this
conditional distribution has fewer dominant
modes, being unimodal in the limit of small
moves. Thus, it is easier to learn because it
is easier to approximate its partition function,
more like learning to perform supervised func-
tion approximation, with gradients that can be
obtained by backprop. We provide theorems
that generalize recent work on the probabilistic
interpretation of denoising autoencoders and
obtain along the way an interesting justifica-
tion for dependency networks and generalized
pseudolikelihood, along with a definition of
an appropriate joint distribution and sampling
mechanism even when the conditionals are not
consistent. GSNs can be used with missing
inputs and can be used to sample subsets of
variables given the rest. ~We validate these
theoretical results with experiments on two
image datasets using an architecture that mimics
the Deep Boltzmann Machine Gibbs sampler but
allows training to proceed with simple backprop,
without the need for layerwise pretraining.

1. Introduction

Research in deep learning (see Bengio (2009) and Bengio
et al. (2013a) for reviews) grew from breakthroughs in
unsupervised learning of representations, based mostly
on the Restricted Boltzmann Machine (RBM) (Hinton
et al., 2006), auto-encoder variants (Bengio et al., 2007;
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Figure 1. Top: A denoising auto-encoder defines an estimated
Markov chain where the transition operator first samples a
corrupted X from C(X|X) and then samples a reconstruction
from Pp(X|X), which is trained to estimate the ground truth
P(X|X). Note how for any given X, P(X|X) is a much
simpler (roughly unimodal) distribution than the ground truth
P(X) and its partition function is thus easier to approximate.
Bottom: More generally, a GSN allows the use of arbitrary latent
variables H in addition to X, with the Markov chain state (and
mixing) involving both X and H. Here H is the angle about
the origin. The GSN inherits the benefit of a simpler conditional
and adds latent variables, which allow far more powerful deep
representations in which mixing is easier (Bengio et al., 2013b).
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Vincent et al., 2008), and sparse coding variants (Lee et al.,
2007; Ranzato et al., 2007). However, the most impressive
recent results have been obtained with purely supervised
learning techniques for deep networks, in particular for
speech recognition (Dahl et al., 2010; Deng et al., 2010;
Seide et al., 2011) and object recognition (Krizhevsky
et al., 2012). The latest breakthrough in object recogni-
tion (Krizhevsky et al., 2012) was achieved with fairly
deep convolutional networks with a form of noise injection
in the input and hidden layers during training, called
dropout (Hinton et al., 2012).

Though the goal of training large unsupervised networks
has turned out to be more elusive than its supervised
counterpart, the vastly larger available volume of unla-
beled data still beckons for efficient methods to model
it. Recent progress in training supervised models raises
the question: can we take advantage of this progress to
improve our ability to train deep, generative, unsupervised,
semi-supervised or structured output models?

This paper lays theoretical foundations for a move in this
direction through the following main contributions:

1 - Intuition: In Section 2 we discuss what we view as ba-
sic motivation for studying alternate ways of training unsu-
pervised probabilistic models, i.e., avoiding the intractable
sums or maximization involved in many approaches.

2 - Training Framework: We generalize recent work
on the generative view of denoising autoencoders (Bengio
et al., 2013c) by introducing latent variables in the frame-
work to define Generative Stochastic Networks (GSNs)
(Section 3). GSNs aim to estimate the data generating
distribution indirectly, by parametrizing the transition op-
erator of a Markov chain rather than directly parametriz-
ing P(X). Most critically, this framework transforms the
unsupervised density estimation problem into one which is
more similar to supervised function approximation. This
enables training by (possibly regularized) maximum like-
lihood and gradient descent computed via simple back-
propagation, avoiding the need to compute intractable par-
tition functions. Depending on the model, this may allow
us to draw from any number of recently demonstrated su-
pervised training tricks.

3 - General theory: Training the generative (decoding /
denoising) component of a GSN P (X |h) with noisy repre-
sentation h is often far easier than modeling P(X) explic-
itly (compare the blue and red distributions in Figure 1).
We prove that if our estimated P(X|h) is consistent (e.g.
through maximum likelihood), then the stationary distri-
bution of the resulting chain is a consistent estimator of
the data generating density, P(X) (Section 3.2). We
strengthen the consistency theorems introduced in Bengio
et al. (2013c) by showing that the corruption distribution
may be purely local, not requiring support over the whole
domain of the visible variables (Section 3.1).

4 — Consequences of theory: We show that the model is
general and extends to a wide range of architectures, in-
cluding sampling procedures whose computation can be

unrolled as a Markov Chain, i.e., architectures that add
noise during intermediate computation in order to produce
random samples of a desired distribution (Theorem 2). An
exciting frontier in machine learning is the problem of
modeling so-called structured outputs, i.e., modeling a con-
ditional distribution where the output is high-dimensional
and has a complex multimodal joint distribution (given the
input variable). We show how GSNs can be used to support
such structured output and missing values (Section 3.3).

5 — Example application: In Section 4 we show an ex-
ample application of the GSN theory to create a deep GSN
whose computational graph resembles the one followed by
Gibbs sampling in deep Boltzmann machines (with con-
tinuous latent variables), but that can be trained efficiently
with back-propagated gradients and without layerwise pre-
training. Because the Markov Chain is defined over a state
(X, h) that includes latent variables, we reap the dual ad-
vantage of more powerful models for a given number of pa-
rameters and better mixing in the chain as we add noise to
variables representing higher-level information, first sug-
gested by the results obtained by Bengio et al. (2013b)
and Luo et al. (2013). The experimental results show that
such a model with latent states indeed mixes better than
shallower models without them (Table 1).

6 — Dependency networks: Finally, an unexpected re-
sult falls out of the GSN theory: it allows us to provide
a novel justification for dependency networks (Heckerman
et al., 2000) and for the first time define a proper joint dis-
tribution between all the visible variables that is learned by
such models (Section 3.4).

2. Summing over too many major modes

Many of the computations involved in graphical models
(inference, sampling, and learning) are made intractable
and difficult to approximate because of the large number of
non-negligible modes in the modeled distribution (either
directly P(z) or a joint distribution P(x,h) involving
latent variables h). In all of these cases, what is intractable
is the computation or approximation of a sum (often
weighted by probabilities), such as a marginalization or the
estimation of the gradient of the normalization constant. If
only a few terms in this sum dominate (corresponding to
the dominant modes of the distribution), then many good
approximate methods can be found, such as Monte-Carlo
Markov chains (MCMC) methods.

Similarly difficult tasks arise with structured output prob-
lems where one wants to sample from P(y, h|z) and both
y and h are high-dimensional and have a complex highly
multimodal joint distribution (given z).

Deep Boltzmann machines (Salakhutdinov & Hinton,
2009) combine the difficulty of inference (for the positive
phase where one tries to push the energies associated with
the observed x down) and also that of sampling (for the
negative phase where one tries to push up the energies
associated with x’s sampled from P(zx)). Unfortunately,
using an MCMC method to sample from P(x, k) in order
to estimate the gradient of the partition function may
be seriously hurt by the presence of a large number of
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important modes, as argued below.

To evade the problem of highly multimodal joint or
posterior distributions, the currently known approaches to
dealing with the above intractable sums make very strong
explicit assumptions (in the parametrization) or implicit as-
sumptions (by the choice of approximation methods) on the
form of the distribution of interest. In particular, MCMC
methods are more likely to produce a good estimator if
the number of non-negligible modes is small: otherwise
the chains would require at least as many MCMC steps as
the number of such important modes, times a factor that
accounts for the mixing time between modes. Mixing time
itself can be very problematic as a trained model becomes
sharper, as it approaches a data generating distribution that
may have well-separated and sharp modes (i.e., manifolds).

We propose to make another assumption that might suffice
to bypass this multimodality problem: the effectiveness of
function approximation.

In particular, the GSN approach presented in the next
section relies on estimating the transition operator of a
Markov chain, e.g. P(x¢|xs—1) or P(xt, he|zi—1, ht—1).
Because each step of the Markov chain is generally local,
these transition distributions will often include only a
very small number of important modes (those in the
neighbourhood of the previous state). Hence the gradient
of their partition function will be easy to approximate.
For example consider the denoising transitions studied
by Bengio et al. (2013c) and illustrated in Figure 1,
where Ty is a stochastically corrupted version of x;_1
and we learn the denoising distribution P(z|Z). In the
extreme case (studied empirically here) where P(z|Z) is
approximated by a unimodal distribution, the only form of
training that is required involves function approximation
(predicting the clean x from the corrupted ).

Although having the true P(x|Z) turn out to be unimodal
makes it easier to find an appropriate family of models
for it, unimodality is by no means required by the GSN
framework itself. One may construct a GSN using any
multimodal model for output (e.g. mixture of Gaussians,
RBMs, NADE, etc.), provided that gradients for the
parameters of the model in question can be estimated (e.g.
log-likelihood gradients).

The approach proposed here thus avoids the need for a
poor approximation of the gradient of the partition function
in the inner loop of training, but still has the potential
of capturing very rich distributions by relying mostly on
“function approximation”.

Besides the approach discussed here, there may well
be other very different ways of evading this problem of
intractable marginalization, including approaches such as
sum-product networks (Poon & Domingos, 2011), which
are based on learning a probability function that has a
tractable form by construction and yet is from a flexible
enough family of distributions.

3. Generative Stochastic Networks

Assume the problem we face is to construct a model for
some unknown data-generating distribution P(X) given
only examples of X drawn from that distribution. In many
cases, the unknown distribution P(X) is complicated, and
modeling it directly can be difficult.

A recently proposed approach using denoising autoen-
coders transforms the difficult task of modeling P(X) into
a supervised learning problem that may be much easier
to solve. The basic approach is as follows: given a clean
example data point X from P(X), we obtain a corrupted
version X by sampling from some corruption distribution
C(X|X). For example, we might take a clean image, X,
and add random white noise to produce X . We then use su-
pervised learning methods to train a function to reconstruct,
as accurately as possible, any X from the data set given
only a noisy version X. As shown in Figure 1, the recon-
struction distribution P(X|X) may often be much easier

to learn than the data distribution P(X), because P(X|X)
tends to be dominated by a single or few major modes
(such as the roughly Gaussian shaped density in the figure).

But how does learning the reconstruction distribution
help us solve our original problem of modeling P(X)?
The two problems are clearly related, because if we
knew everything about P(X), then our knowledge of
the C(X|X) that we chose would allow us to precisely
specify the optimal reconstruction function via Bayes rule:
P(X|X) = 1C(X|X)P(X), where z is a normalizing
constant that does not depend on X. As one might hope,
the relation is also true in the opposite direction: once we
pick a method of adding noise, C(X|X), knowledge of

the corresponding reconstruction distribution P(X|X) is
sufficient to recover the density of the data P(X).

This intuition was borne out by proofs in two recent
papers. Alain & Bengio (2013) showed that denoising
auto-encoders with small Gaussian corruption and squared
error loss estimated the score (derivative of the log-density
with respect to the input) of continuous observed random
variables. More recently, Bengio et al. (2013c) generalized
this to arbitrary variables (discrete, continuous or both),
arbitrary corruption (not necessarily asymptotically small),
and arbitrary loss function (so long as they can be seen as
a log-likelihood).

Beyond proving that P(X|X) is sufficient to reconstruct
the data density, Bengio et al. (2013c) also demonstrated
a method of sampling from a learned, parametrized model
of the density, P»(X), by running a Markov chain that
alternately adds noise using C(X|X) and denoises by
sampling from the learned P»(X|X), which is trained
to approximate the true P(X|X). The most important
contribution of that paper was demonstrating that if a
learned, parametrized reconstruction function Pp(X|X)
converges to the true P(X|X), then under some relatively
benign conditions the stationary distribution 7(X) of the
resulting Markov chain will exist and will indeed converge
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to the data distribution P(X).

Before moving on, we should pause to make an important
point clear. Alert readers may have noticed that P(X|X)
and P(X) can each be used to reconstruct the other given
knowledge of C(X|X). Further, if we assume that we have
chosen a simple C(X|X) (say, a uniform Gaussian with
a single width parameter), then P(X|X) and P(X) must
both be of approximately the same complexity. Put another
way, we can never hope to combine a simple C(X | X) and a
simple P(X|X) to model a complex P(X). Nonetheless,
it may still be the case that P(X|X) is easier to model
than P(X) due to reduced computational complexity in
computing or approximating the partition functions of the
conditional distribution mapping corrupted input X to
the distribution of corresponding clean input X. Indeed,
because that conditional is going to be mostly assigning
probability to X locally around X, P(X|X) has only one
or a few modes, while P(X) can have a very large number.

So where did the complexity go? P(X|X) has fewer
modes than P(X), but the location of these modes depends
on the value of X . It is precisely this mapping from X —
mode location that allows us to trade a difficult density
modeling problem for a supervised function approximation
problem that admits application of many of the usual
supervised learning tricks.

In the next four sections, we extend previous results in
several directions.

3.1. Generative denoising autoencoders with local noise

The main theorem in Bengio et al. (2013c¢) (stated in sup-
plemental as Theorem S1) requires that the Markov chain
be ergodic. A set of conditions guaranteeing ergodicity
is given in the aforementioned paper, but these conditions
are restrictive in requiring that C(X|X) > 0 everywhere
that P(X) > 0. The effect of these restrictions is that
Py(X|X) must have the capacity to model every mode of
P(X), exactly the difficulty we were trying to avoid. We
show in this paper’s supplemental material how we may
also achieve the required ergodicity through other means,
allowing us to choose a C(X|X) that only makes small
jumps, which in turn only requires Py(X|X) to model a
small part of the space around each X.

3.2. Generalizing the denoising autoencoder to GSNs

The denoising auto-encoder Markov chain is defined by
X; ~ C(X|Xy) and Xy 1 ~ Py(X|Xy), where X, alone
can serve as the state of the chain. The GSN framework
generalizes this by defining a Markov chain with both a
visible X; and a latent variable H; as state variables, of the
form

Pf?'l (H|Htht)
Py, (X[Hy1).

Ht+1 ~
Xt+1 ~

H (i) (i)

0 1 2 eoe

Denoising auto-encoders are thus a special case of GSNs.
Note that, given that the distribution of H;,; depends on
a previous value of H;, we find ourselves with an extra
Hj variable added at the beginning of the chain. This H
complicates things when it comes to training, but when we
are in a sampling regime we can simply wait a sufficient
number of steps to burn in.

The next theoretical results give conditions for making the
stationary distributions of the above Markov chain match
a target data generating distribution.

Theorem 2. Let (Hy;, X;),, be the Markov chain defined
by the following graphical model.

O

If we assume that the chain has a stationary distribution
7, x, and that for every value of (x, h) we have that

e all the P(X; = z|H; = h) = g(x,h) share the same
density fort > 1

e all the P(Hy1y = h|Hy = N, Xy = z) = f(h, W, x)
share the same density fort > 0

o P(HO = h|X0 :LI}) :P(Hl :h|X0 :1‘)

[ ] P(Xl:$|H1:h)=P(X0:I|H1:h)

then for every value of (x, h) we get that
e P(Xo = z|Hy = h) = g(x,h) holds, which is

something that was assumed only fort > 1

e P(X;y =x,H, = h) = P(Xog = x,Hy = h) for all
t>0

e the stationary distribution wg x has a marginal
distribution 7wx such that 7 (x) = P (Xo = ).

Those conclusions show that our Markov chain has the
property that its samples in X are drawn from the same
distribution as Xy.

The proof is given in this paper’s supplemental material.
We also address there the issue of the consistency of
the stationary distribution that we obtain when using an
increasing, but finite, number of training samples.

We avoid discussing the training criterion for a GSN.
Various alternatives exist, but this analysis is for future
work. Right now Theorem 2 suggests the following rules :

e Pick the transition distribution f(h,h’, x) to be useful
(e.g. through training that maximizes reconstruction
likelihood).

e Make sure that during training P(Hy = h| Xy = ) —
P(Hy = h|Xp = x). One interesting way to achieve
this is, for each X in the training set, iteratively sample



Deep Generative Stochastic Networks Trainable by Backprop

Hy|(Hp,Xo) and substitute the value of H; as the
updated value of Hy. Repeat until you have achieved
a kind of “burn in”. Note that, after the training is
completed, when we use the chain for sampling, the
samples that we get from its stationary distribution do
not depend on Hy. This technique of substituting the
H; into Hy does not apply beyond the training step.

e Define g(z, h) to be your estimator for P(Xy = z|H;, =
h), e.g. by training an estimator of this conditional
distribution from the samples (X, Hy).

o The rest of the chain for ¢ > 1 is defined in terms of

(f,9)-

There several equivalent ways of expressing a GSN. One
of the interesting formulations is to use deterministic
functions of random variables to express the densities
(f,g) used in Theorem 2. With that approach, we define
Hivw = fo, (X, Zi, Hy) for some independent noise
source Z;, and we insist that X; cannot be recovered
exactly from H;, ;. The advantage of that formulation is
that one can directly back-propagated the reconstruction
log-likelihood log P(X; = zo|H1 = f(Xo,Zo,Hop))
into all the parameters of f and ¢ (a similar idea was
independently proposed in (Kingma, 2013) and also
exploited in (Rezende et al., 2014)).

For the rest of this paper, we will use such a deterministic
function f instead of having f refer to a probability density
function. We apologize if it causes any confusion.

In the setting described at the beginning of section 3, the
function playing the role of the “encoder” was fixed for
the purpose of the theorem, and we showed that learning
only the “decoder” part (but a sufficiently expressive one)
sufficed. In this setting we are learning both, which can
cause certain broken behavior.

One problem would be if the created Markov chain failed to
converge to a stationary distribution. Another such problem
could be that the function f(X;, Z;, H;) learned would try
to ignore the noise Z;, or not make the best use out of it. In
that case, the reconstruction distribution would simply con-
verge to a Dirac at the input X. This is the analogue of the
constraint on auto-encoders that is needed to prevent them
from learning the identity function. Here, we must design
the family from which f and g are learned such that when
the noise Z is injected, there are always several possible
values of X that could have been the correct original input.

Another extreme case to think about is when f(X, Z, H)
is overwhelmed by the noise and has lost all information
about X. In that case the theorems are still applicable
while giving uninteresting results: the learner must capture
the full distribution of X in Py, (X|H) because the
latter is now equivalent to Py, (X), since f(X,Z, H) no
longer contains information about X. This illustrates that
when the noise is large, the reconstruction distribution
(parametrized by 62) will need to have the expressive
power to represent multiple modes. Otherwise, the
reconstruction will tend to capture an average output,
which would visually look like a fuzzy combination of

actual modes. In the experiments performed here, we have
only considered unimodal reconstruction distributions
(with factorized outputs), because we expect that even
if P(X|H) is not unimodal, it would be dominated by a
single mode when the noise level is small. However, future
work should investigate multimodal alternatives.

A related element to keep in mind is that one should pick
the family of conditional distributions Py, (X|H) so that
one can sample from them and one can easily train them
when given (X, H) pairs, e.g., by maximum likelihood.

3.3. Handling missing inputs or structured output

In general, a simple way to deal with missing inputs is
to clamp the observed inputs and then apply the Markov
chain with the constraint that the observed inputs are fixed
and not resampled at each time step, whereas the unob-
served inputs are resampled each time, conditioned on the
clamped inputs. As proved in this paper’s supplementary
material, this procedure gives rise to sampling from the
appropriate conditional distribution:

Proposition 1. If a subset (%) of the elements of X is kept

fixed (not resampled) while the remainder X =) is updated
stochastically during the Markov chain of Theorem 2, but

using P(X¢|Hz, Xt(s) = (%)), then the asymptotic distri-
bution m,, of the Markov chain produces samples of X (=)
from the conditional distribution T, (X (—%)| X () = z(5)),

Practically, it means that we must choose an output (re-
construction) distribution from which it is not only easy to
sample from, but also from which it is easy to sample a sub-
set of the variables in the vector X conditioned on the rest
being known. In the experiments below, we used a factorial
distribution for the reconstruction, from which it is trivial
to sample conditionally a subset of the input variables. In
general (with non-factorial output distributions) one must
use the proper conditional for the theorem to apply, i.e., it
is not sufficient to clamp the inputs, one must also sample
the reconstructions from the appropriate conditional
distribution (conditioning on the clamped values).

This method of dealing with missing inputs can be im-
mediately applied to structured outputs. If X (%) is viewed
as an “input” and X(~*) as an “output”, then sampling
from X ~ P(XCO|f((XW, X;™), Z,, Hy), X))
will converge to estimators of P(X(=*)|X (%)), This still
requires good choices of the parametrization (for f as well
as for the conditional probability P), but the advantages
of this approach are that there is no approximate inference
of latent variables and the learner is trained with respect
to simpler conditional probabilities: in the limit of small
noise, we conjecture that these conditional probabilities
can be well approximated by unimodal distributions.
Theoretical evidence comes from Alain & Bengio (2013):
when the amount of corruption noise converges to 0 and
the input variables have a smooth continuous density, then
a unimodal Gaussian reconstruction density suffices to
fully capture the joint distribution.
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xo/lj \X/H\X/Tg. .

Figure 2. Left: Generic GSN Markov chain with state variables X; and H;.

Right: GSN Markov chain inspired by the unfolded

computational graph of the Deep Boltzmann Machine Gibbs sampling process, but with backprop-able stochastic units at each layer.
The training example X = x starts the chain. Either odd or even layers are stochastically updated at each step. All ;s are corrupted by
salt-and-pepper noise before entering the graph (lightning symbol). Each z; for ¢ > 0 is obtained by sampling from the reconstruction
distribution for that step, Py, (X¢|H:). The walkback training objective is the sum over all steps of log-likelihoods of target X = xo
under the reconstruction distribution. In the special case of a unimodal Gaussian reconstruction distribution, maximizing the likelihood
is equivalent to minimizing reconstruction error; in general one trains to maximum likelihood, not simply minimum reconstruction error.

3.4. Dependency Networks as GSNs

Dependency networks (Heckerman et al., 2000) are mod-
els in which one estimates conditionals P;(x;|x_;), where
x_; denotes x \ x;, i.e., the set of variables other than the
i-th one, z;. Note that each P; may be parametrized sep-
arately, thus not guaranteeing that there exists a joint of
which they are the conditionals. Instead of the ordered
pseudo-Gibbs sampler defined in Heckerman et al. (2000),
which resamples each variable x; in the order x1, zo, .. .,
we can view dependency networks in the GSN framework
by defining a proper Markov chain in which at each step
one randomly chooses which variable to resample. The cor-
ruption process therefore just consists of H = f(X,Z) =
X_s where X_; is the complement of X, with s a ran-
domly chosen subset of elements of X (possibly con-
strained to be of size 1). Furthermore, we parametrize
the reconstruction distribution as Py, (X = =z|H) =
0z_.=x_.Po, s(Xs = xs|z_s) where the estimated condi-
tionals Py, s(Xs = xs|z_s) are not constrained to be con-
sistent conditionals of some joint distribution over all of X.

Proposition 2. If the above GSN Markov chain has a
stationary distribution, then the dependency network
defines a joint distribution (which is that stationary distri-
bution), which does not have to be known in closed form.
Furthermore, if the conditionals are consistent estimators
of the ground truth conditionals, then that stationary
distribution is a consistent estimator of the ground truth
Jjoint distribution.

The proposition can be proven by immediate application of
Theorem 1 from Bengio et al. (2013c) with the above def-
initions of the GSN. This joint stationary distribution can
exist even if the conditionals are not consistent. To show
that, assume that some choice of (possibly inconsistent)
conditionals gives rise to a stationary distribution 7. Now
let us consider the set of all conditionals (not necessarily
consistent) that could have given rise to that w. Clearly,
the conditionals derived from = is part of that set, but there
are infinitely many others (a simple counting argument
shows that the fixed point equation of 7 introduces fewer

constraints than the number of degrees of freedom that
define the conditionals). To better understand why the
ordered pseudo-Gibbs chain does not benefit from the
same properties, we can consider an extended case by
adding an extra component of the state X, being the index
of the next variable to resample. In that case, the Markov
chain associated with the ordered pseudo-Gibbs procedure
would be periodic, thus violating the ergodicity assumption
of the theorem. However, by introducing randomness in
the choice of which variable(s) to resample next, we
obtain aperiodicity and ergodicity, yielding as stationary
distribution a mixture over all possible resampling orders.
These results also show in a novel way (see e.g. Hyvirinen
(2006) for earlier results) that training by pseudolikelihood
or generalized pseudolikelihood provides a consistent es-
timator of the associated joint, so long as the GSN Markov
chain defined above is ergodic. This result can be applied
to show that the multi-prediction deep Boltzmann machine
(MP-DBM) training procedure introduced by Goodfellow
et al. (2013) also corresponds to a GSN. This has been
exploited in order to obtain much better samples using the
associated GSN Markov chain than by sampling from the
corresponding DBM (Goodfellow et al., 2013). Another in-
teresting conclusion that one can draw from this paper and
its GSN interpretation is that state-of-the-art classification
error can thereby be obtained: 0.91% on MNIST without
fine-tuning (best comparable previous DBM results was
well above 1%) and 10.6% on permutation-invariant
NORB (best previous DBM results was 10.8%).

4. Experimental Example of GSN

The theoretical results on Generative Stochastic Networks
(GSNs) open for exploration a large class of possible
parametrizations which will share the property that they
can capture the underlying data distribution through the
GSN Markov chain. What parametrizations will work
well? Where and how should one inject noise? We present
results of preliminary experiments with specific selections
for each of these choices, but the reader should keep in
mind that the space of possibilities is vast.
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As a conservative starting point, we propose to explore
families of parametrizations which are similar to existing
deep stochastic architectures such as the Deep Boltzmann
Machine (DBM) (Salakhutdinov & Hinton, 2009). Basi-
cally, the idea is to construct a computational graph that
is similar to the computational graph for Gibbs sampling
or variational inference in Deep Boltzmann Machines.
However, we have to diverge a bit from these architectures
in order to accommodate the desirable property that it
will be possible to back-propagate the gradient of recon-
struction log-likelihood with respect to the parameters
f, and 6,. Since the gradient of a binary stochastic
unit is 0 almost everywhere, we have to consider related
alternatives. An interesting source of inspiration regarding
this question is a recent paper on estimating or propagating
gradients through stochastic neurons (Bengio, 2013).
Here we consider the following stochastic non-linearities:
h; = Nout + tanh(ni, + a;) where a; is the linear activation
for unit ¢ (an affine transformation applied to the input of
the unit, coming from the layer below, the layer above, or
both) and n;, and 7,y are zero-mean Gaussian noises.

To emulate a sampling procedure similar to Boltzmann
machines in which the filled-in missing values can depend
on the representations at the top level, the computational
graph allows information to propagate both upwards (from
input to higher levels) and downwards, giving rise to
the computational graph structure illustrated in Figure 2,
which is similar to that explored for deterministic recurrent
auto-encoders (Seung, 1998; Behnke, 2001; Savard,
2011). Downward weight matrices have been fixed to the
transpose of corresponding upward weight matrices.

The walkback algorithm was proposed in Bengio et al.
(2013c) to make training of generalized denoising auto-
encoders (a special case of the models studied here) more
efficient. The basic idea is that the reconstruction is
obtained after not one but several steps of the sampling
Markov chain. In this context it simply means that the
computational graph from X to a reconstruction probabil-
ity actually involves generating intermediate samples as if
we were running the Markov chain starting at X. In the
experiments, the graph was unfolded so that 2D sampled
reconstructions would be produced, where D is the depth
(number of hidden layers). The training loss is the sum of
the reconstruction negative log-likelihoods (of target X)
over all those reconstruction steps.

The supplemental material provides full details on the
experiments and more detailed figures of generated sam-
ples. We summarize the results here. The experiments
were performed on the MNIST and Toronto Face Database
(TFD) (Susskind et al., 2010) datasets, following the setup
in Bengio et al. (2013b), where the model generates quan-
tized (binary) pixels. A lower bound on the log-likelihood,
based only on the generated samples (or rather the con-
ditional expectations F[X|H] for the sampled H’s) and
introduced in Breuleux et al. (2011) was used to compare
various models in Table 1. The results show that a GSN
with latent state performed better than a pure denoising
auto-encoder (or equivalently, that a deeper GSN yields

both better samples and a better likelihood bound). As can
be seen, the samples are of quality comparable to those
obtained by Deep Boltzmann Machines (DBMs) and Deep
Belief Nets (DBNs). Figures 3 and 4 illustrate generated
samples and show the fast mixing. Figure 3 (bottom) also
shows successful conditional sampling of the left hand
side of the image given the right hand side.
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Figure 3. Top: two runs of consecutive samples (one row after the
other) generated from 2-layer GSN model, showing fast mixing
between classes, nice and sharp images. Note: only every fourth
sample is shown; see the supplemental material for the samples
in between. Bottom: conditional Markov chain, with the right
half of the image clamped to one of the MNIST digit images and
the left half successively resampled, illustrating the power of the
generative model to stochastically fill-in missing inputs.

5. Conclusion

We have introduced a new approach to training generative
models, called Generative Stochastic Networks (GSN),
that is an alternative to maximum likelihood, with the
objective of avoiding the intractable marginalizations and
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Figure 4. GSN samples from a 3-layer model trained on the TFD
dataset. Every second sample is shown; see supplemental mate-
rial for every sample. At the end of each row, we show the nearest
example from the training set to the last sample on that row, to il-
lustrate that the distribution is not merely copying the training set.

Table 1. Test set log-likelihood lower bound (LL) obtained by
a Parzen density estimator constructed using 10000 generated
samples, for different generative models trained on MNIST.
The LL is not directly comparable to AIS likelihood estimates
because we use a Gaussian mixture rather than a Bernoulli
mixture to compute the likelihood, but we can compare with
Rifai et al. (2012); Bengio et al. (2013b;c) (from which we took
the last three columns). A DBN-2 has 2 hidden layers, a CAE-1
has 1 hidden layer, and a CAE-2 has 2. The DAE is basically a
GSN-1, with no injection of noise inside the network.

GSN-2 DAE DBN-2 CAE-1 CAE-2
LL 214 144 138 68 121
STD.ERR. 1.1 1.6 2.0 2.9 1.6

the danger of poor approximations of these marginaliza-
tions. The training procedure is more similar to function
approximation than to unsupervised learning because the
reconstruction distribution is simpler than the data distribu-
tion, often unimodal (provably so in the limit of very small
noise). This makes it possible to train unsupervised models
that capture the data-generating distribution simply using
back-prop and gradient descent (in a computational graph
that includes noise injection). The proposed theoretical
results state that under mild conditions (in particular that
the noise injected in the networks prevents perfect recon-
struction), training the model to denoise and reconstruct its
observations (through a powerful family of reconstruction
distributions) suffices to capture the data-generating distri-
bution through a simple Markov chain. Another way to put
it is that we are training the transition operator of a Markov

chain whose stationary distribution estimates the data dis-
tribution, and it turns out that this is a much easier learning
problem because the normalization constant for this condi-
tional distribution is generally dominated by fewer modes.
These theoretical results are extended to the case where
the corruption is local but still allows the chain to mix and
to the case where some inputs are missing or constrained
(thus allowing to sample from a conditional distribution on
a subset of the observed variables or to learned structured
output models). The GSN framework is shown to lend to
dependency networks a valid estimator of the joint dis-
tribution of the observed variables even when the learned
conditionals are not consistent, also allowing to prove
consistency of generalized pseudolikelihood training, asso-
ciated with the stationary distribution of the corresponding
GSN (that randomly chooses a subset of variables and then
resamples it). Experiments have been conducted to validate
the theory, in the case where the GSN architecture emulates
the Gibbs sampling process of a Deep Boltzmann Machine,
on two datasets. A quantitative evaluation of the samples
confirms that the training procedure works very well (in
this case allowing us to train a deep generative model
without layerwise pretraining) and can be used to perform
conditional sampling of a subset of variables given the rest.
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