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Abstract 

In order to meet the big data challenge of today’s society, several parallel execution models on distributed memory 
architectures have been proposed: MapReduce, Iterative MapReduce, graph processing, and dataflow graph 
processing. Dryad is a distributed data-parallel execution engine that model program as dataflow graphs. In this 
paper, we evaluated the runtime and communication overhead of Dryad in a realistic setting. We proposed a 
performance model for Dryad implementation of parallel matrix multiplication (PMM) and extend the model to MPI 
implementations. We conducted experimental analyses in order to verify the correctness of our analytic model on a 
Windows cluster with up to 400 cores, Azure with up to 100 instances, and Linux cluster with up to 100 nodes. The 
final results show that our analytic model produces accurate predictions within 5% of the measured results.      
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1. Motivation and Background 

A data deluge exists in today’s society. The rapid growth of information requires domain technologies and 
runtime tools to process huge amounts of data. In order to meet this big data challenge, several parallel execution 
models on distributed memory architectures have been proposed: MapReduce[7], Iterative MapReduce[13, 16], 
graph processing[10], and dataflow graph processing. The MapReduce programming model has been applied to a 
wide range of applications and attracted enthusiasm from distributed computing communities due to its ease of use 
and efficiency in processing large scale distributed data. However, MapReduce has the limitations. For example, it is 
not efficient to process multiple, related heterogeneous datasets, and iterative applications. Paper [13] implemented 
a parallel runtime for iterative MapReduce applications that outperform Hadoop in performance by several orders of 
magnitude. Paper [20] found that Hadoop is not efficient when processing an RDF graph pattern match that requires 
the joining of multiple input data streams. Dryad is a data flow runtime that models application as data flow among 
processes or DAGs. Dryad support relational algebra and can process relational un-structure and semi-structure data 
more efficiently than Hadoop.  

Performance modelling of applications has been well studied in the HPC domain for decades. It is not only used 
to predicate the job running time for specific applications, but can also be used for profiling runtime environments. 
Among various runtime environments, the performance modelling of MPI on distributed memory architecture is 
well understood. These performance modelling approaches include: analytical modelling, empirical modelling, and 
semi-empirical modelling. Papers [17] and [18] investigated the analytical model of parallel programs implemented 
with MPI executed in a cluster of workstations. Paper [15] proposed a semi-empirical model for bioinformatics 
applications that was implemented using the hybrid parallel approach on a Windows HPC cluster. Paper [10] 
introduced a semi-experimental performance model for Hadoop. However, the performance analysis of parallel 
programs using data flow runtimes is relatively understudied. In fact, the performance impact of dataflow graph 
runtimes at massive scale is increasingly of concern. In addition, a growing concern exists about the power issue and 
cost effectiveness of the “pay-as-you-go” environment. We argue that the data flow graph runtime should also 
deliver efficiency for parallel programs. Thus, this study of the performance modelling of data flow graph runtimes 
is of practical value.  
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Several sources of runtime performance degradations exist, including[22]: latency, overhead, and 
communication. Latency is the time delay used to access remote data or services such as memory buffers or remote 
file pipes. Overhead is the critical path work required to manage parallel physical resources and concurrent abstract 
tasks. It can determine the scalability of a system and the minimum granularity of program tasks that can be 
effectively exploited. Communication is the process of exchanging data and information between processes. 
Previous studies [19] of application usage have shown that the performance of collective communications is critical 
to high performance computing (HPC). The difficulty of building analytical models of parallel programs of data 
flow runtimes is to identify the communication behavior and model communication overhead.   

In this paper, we proposed an analytical timing model for Dryad implementation of PMM in realistic settings 
which is more general than the settings used in the empirical and semi-empirical model. We extended the proposed 
analytical model to MS.MPI, and made comprehensive comparisons between Dryad and MPI implementations of 
the PMM applications. We conducted experimental analyses in order to verify the correctness of our analytic model 
on a Windows cluster with up to 400 cores, Azure with up to 100 instances, and Linux cluster with up to 100 nodes. 
The final results show that our analytic model produces accurate predictions within 5% of the measured results.   

The remainder of this paper is organized as follows. An introduction to Dryad is briefly discussed in section 2, 
followed by an evaluation of the overhead of the Dryad runtime in section 3. In section 4, we present the analytical 
model for the Dryad and MPI implementations of the PMM application. Section 5 contains the experiments results 
of the proposed analytical model. Finally, we provided remarks and conclusions in section 6.  

2. Dryad Overview 

Architecture of Dryad  
Dryad, DryadLINQ and DSC [5] are a set of technologies that support the processing of data intensive 

applications in the Windows platform. Dryad is a general purpose runtime and a Dryad job is represented as a 
directed acyclic graph (DAG), which is called the Dryad graph. One Dryad graph consists of vertices and channels. 
A graph vertex is an independent instance of the data processing program in a certain step. The graph edges are the 
channels transferring data between the vertices. DryadLINQ is the high-level programming language and compiler 
for Dryad. The DryadLINQ compiler can automatically translate the Language-Integrated Query (LINQ) programs 
written by .NET language into distributed, optimized computation steps that run on top of the Dryad cluster. The 
Distributed Storage Catalog (DSC) is the component that works with the NTFS in order to provide data management 
functionalities, such as data sets storage, replication and load balancing within the HPC cluster.  

            
Figure 1:  Dryad Architecture     Figure 2: Dryad Job Graph 

Parallel Execution Model 
Dryad uses directed acyclic graph to describe the control flow and dataflow dependencies among Dryad tasks 

that are spawn by DryadLINQ programs. The Dryad graph manager, which is a centralized job manager, reads the 
execution plan that was initially created by the DryadLINQ provider. Each node of the graph represents a unit of 
work called a vertex. The vertices are scheduled onto DSC nodes for the execution according to data locality 
information. If there are more vertices than DSC nodes, then the Dryad graph manager queues the execution of some 
of the vertices. Dryad utilizes the generalization of the UNIX piping mechanism in order to connect the vertices that 



 Author name / Procedia Computer Science 00 (2012) 000–000  

comprise a job. Dryad extends the standard pipe model to handle distributed applications that run on a cluster. 
Figure 2 illustrates the Dryad job graph for a typical Dryad job.  

3. Evaluating and Measuring the Dryad Overhead 

Experiment Settings 
Infrastructure Tempest (32 nodes) Azure (100 instance) Quarry (230 nodes) Odin (128 nodes) 

CPU (Intel E7450) 2.4 GHz 2.1 GHz 2.0 GHz 2.7 GHz 

Cores per node 24 1 8 8 

Memory 24 GB 1.75GB 8GB 8GB 

Network InfiniBand 20 Gbps,   
Ethernet  1Gbps 

100Mbps (reserved) 10Gbps 10Gbps 

Ping-Pong latency 116.3 ms with 1Gbps,       
42.5 ms with 20 Gbps 

285.8 ms 75.3 ms 94.1 ms 

OS Version Windows HPC R2 SP3 Windows Server R2 SP1 Red Hat 3.4 Red Hat 4.1 

Runtime LINQ to HPC, MS.MPI LINQ to HPC, MS.MPI IntelMPI OpenMPI 

Table 1: System Parameters of Azure Small Instances and a 32 Nodes Windows HPC Cluster Named Tempest 
 
3.1 Overhead of the Dryad Primitives 

Dryad utilizes the centralized job manager to schedule Dryad tasks to Dryad vertices in order to run LINQ 
queries. The centralized job scheduler can create an optimized execution plan based on global information, such as 
resource availability, tasks status, and workload distribution. However, the downside of centralized scheduling is 
that the scheduling overhead will be the performance bottleneck of many fine grain tasks [11]. In order to 
investigate the runtime overhead of Dryad, we measured the overhead of the Select and Aggregate operations of 
Dryad with zero workload within the user defined function of each Dryad task. We put a timer within the user 
defined function, and calculated the maximum time span of all of the Dryad tasks to get an overhead of calling 
Select and Aggregate in Dryad.   

  
(a)Dryad_Select Tempest/Azure         (b)Dryad_Select Tempest                    (c) Dryad_Select Azure  
Figure 1. Overhead of Calling Dryad Select Operation: (a) 100 runs of Dryad_Select on 16 instances/nodes on 
Azure and Tempest using 1Gbps and 20Gbps network, respectively; (b) Dryad_Select using up to 30 nodes on 
Tempest; (c) Dryad_Select using up to 30 nodes on Azure.  

 
Figure 1 (a) shows the sorted overhead of invoking Dryad_Select 100 times on 16 nodes and 16 small instances 

on Tempest and Azure, respectively. The average overhead of calling Select with a zero workload on 16 nodes on 
different runtime environments was 0.24 (with InfiniBand on Tempest), 0.36 (with Ethernet on Tempest) and 2.73 
seconds (with 100Mbps virtual network on Azure). We also conducted the same set of experiments for the Dryad 
Aggregate operation, and found similar overhead patterns as depicts in Figure 1(a). As a comparison, we measured 
the overhead of MPI_Bcast in MS.MPI with a zero payload using the same hardware resources. The average 
overhead of calling MPI_Bcast using 20Gbps InfiniBand, 1Gbps Ethernet on Tempest and 100Mbps virtual network 
on Azure were 0.458, 0.605 and 1.95 milliseconds, respectively. The results indicated Dryad prefers to deal with 
coarse-grain tasks due to the relative high overhead of calling Dryad primitives. We also investigated the scalability 
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of Dryad Select on Tempest and Azure. Figures 1(b) and (c) depict the overhead of Dryad Select with a zero 
workload using up to 30nodes on Tempest and up to 30 instances on Azure. Figure 1 (b) showed few high random 
detours when using more than 26 nodes due to a more aggregated random system interruption, runtime fluctuation, 
and network jitter. Figure 1(c) show more random detour than figure 1(b) due to the fluctuations in the cloud 
environment. In sum, the average overhead of Dryad Select on Tempest and Azure were both linear with the number 
of nodes and varied between 0.1 to 7 seconds depending upon the number of nodes involved. Given that Dryad is 
designed for coarse grain data parallel applications, the overhead of calling Dryad primitives will not be the 
bottleneck of application performance. 
3.2 Overhead of Dryad Communication 

 

 
(a) Dryad Broadcast on Tempest        (b) Dryad Broadcast on Tempest         (c) Dryad Broadcast on Azure  

 
(d) Dryad Broadcast on Tempest       (e) Dryad Broadcast on Tempest          (f) Dryad Broadcast on Azure  

 
Figure 2: Dryad broadcast overhead using different message sizes, number of nodes, and network environments. (a) 
message size between 8MB and 256MB on 16 nodes on Tempest with 20Gbps network; (b) (8MB~256MB) on 16 
nodes on Tempest with 1Gbps network; (c) (8MB~256MB) on 16 small instances on Azure. (d) 72 MB message 
broadcast to 2 to 30 nodes on Tempest with 20Gbps network; (e) 72 MB on 2-30 nodes on Tempest with 1Gbps 
network; (f) 72 MB on 2-30 small instances on Azure. 
 
     Previous studies of application usage have shown that the performance of collective communications is critical to 
the performance of the parallel program. In MPI, broadcast operations broadcast a message from the root process to 
all of the processes of the group. In Dryad, we can use the Select or Join functions to implement the broadcast 
operation among the Dryad vertices. We made the parameters sweep for the Dryad Broadcast operation using 
different numbers of nodes and message sizes. Figures 2 (a)(b) and (c) plot the time of the Dryad broadcasting 
message from 8MB to 256 MB on 16 nodes/instances on Tempest and Azure. The results indicated that the 
broadcasting overhead was linear with the size of the message. As expected, Azure had a much higher performance 
fluctutaion due to the network jitter in the cloud. We also found that using infinitband did not improve the broadcast 
performance of Dryad when compared with the results using ethernet. The average speed of the Dryad Broadcast 
using 1Gbps and 20Gbps network was 108.3MB/sec and 114.7MB/sec, respectively. This minor difference in 
broadcast performance is due to the bottleneck of transferring data via the file pipe in Dryad. Figures 2 (d)(e) and (f) 
plots the overhead of Dryad broadcasting using 2~30 nodes on Tempest and Azure. While we strove to find the 
turning points in performance study of MPI collective communication caused by the network contention, we did not 
find this pattern for Dryad broadcasting because Dryad use flat tree to broadcast messages to all of its vertices and 
does not explore the parallelism in collective communication as MPI does. Thus, the results showed that the 
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overhead for the Dryad broadcasting was linear with the number of computer nodes, which is not scalable behavior 
for message intensive applications. 
 
4 Performance Model for Dryad and MPI Implementations of Parallel Matrix Multiplication  

 
 We chose the parallel matrix multiplication (PMM) application [1] to evaluate performance as PMM has well 
established communication and computation patterns. Figures 3(a)(b) and (c) show the communication/computation 
patterns of PMM using MS.MPI on Tempest and Azure. The horizontal lines are application run times and the red 
bar represents the collective communication operations while the green bar represents the computation operations. 
The MS.MPI PMM implementation has regular communication and computation patterns on Tempest, while the 
Dryad implementation of PMM has a less regular pattern. The results showed that the broadcast overhead of Dryad 
is less sensitive than that of MPI in different network environments. As shown in Figures 3(c) and (f), both the 
Dryad and MPI implementations of PMM have irregular communication and computation patterns on Azure due to 
the network jitter in the cloud. As compared to the communication overhead, the computation overhead is relatively 
consistent in Tempest and Azure. Thus, we need to carefully consider the communication behavior in Dryad and 
MPI in order to model application performance accurately.  
 

  
(a) MS.MPI Tempest 20Gbps       (b) MS.MPI Tempest 1Gbps              (c) MS.MPI Azure 100 Mbps 

 
(d) Dryad, Tempest, 20Gbps        (e)  Dryad, Tempest , 1Gbps           (f) Dryad, Azure, 100Mbps, 

Figure 3: communication and computation pattern of 16000x 16000 PMM jobs using different runtime 
environments. (a) MS.MPI on 16nodes on Tempest with 20Gbps network. (b) MS.MPI on 16nodes on Tempest 
with 1Gbps network. (c) MS.MPI on 16 small instances on Azure with 100Mbps network. (d) Dryad on 16nodes 
on Tempest with 20Gbps network. (e) Dryad on 16nodes on Tempest with 1Gbps network. (f) Dryad on 100 
small instances on Azure with reserved 100Mbps network. 

 
 The matrix-matrix multiplication is a fundamental kernel whose problem model has been well studied for 
decades. The computation overhead increases in terms of N cubic, while the memory overhead increases in terms of 
N square. The workload of the DGEMM job can be partitioned into homogeneous subtasks with an even workload, 
and run in parallel. The regular computation and communication pattern of the homogeneous PMM tasks makes it 
an ideal application for our performance study of Dryad. We have already illustrated the PMM algorithm and 
implementation in detail in an earlier publication and technical report [4]. In this paper, we proposed a more 
accurate analytical timing model of PMM using Dryad and MPI, which is different from the analytical model 
proposed by Geoffrey Fox in 1987 [1]. 
 In order to simplify the analytical model, we assume that the input sub-matrices A and B already reside in the 
compute nodes that have been decomposed in the two-dimensional fashion. We also assume that the output sub-
matrix C will end up decomposed in the same way. Thus, our timings did not consider the overhead of loading sub-
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matrices A, B and C. We assumed that the M*M matrix multiplication jobs are partitioned and run on a mesh of 
√N*√N compute nodes. The size of the sub-matrices in each node is m*m, where m=M/√N. In Dryad for the 
implementation of PMM, we used the Select operator to spawn √N*√N Dryad tasks, each of which runs the 
“broadcast-multiply-rollup” cycle on every iteration of the PMM algorithm. The overhead of Dryad Select, which 
equals the time taken to schedule √N*√N Dryad tasks on each iteration is:  

N*Tscheduling 
Tscheduling is the average overhead of scheduling one Dryad task at a time. It includes the overhead that the Dryad 
job manager interacts with the Windows HPC cluster scheduler via COM, and with the Dryad vertices via the file 
pipe. After the √N*√N Dryad tasks start running, they will run the “broadcast-multiply-roll” cycles of the algorithm. 
In the broadcast stage, the √N*√N tasks are split into √N row broadcast subgroups each of which consist of √N 
tasks. As Dryad uses a flat tree algorithm for broadcasting, it takes (√N-1) sequential steps to broadcast m*m data 
from one task to the other √N-1 tasks within the same row broadcast subgroup. Based on the latency and bandwidth 
(Hockney) model, the time taken to broadcast one sub-matrix A for √N Dryad tasks within one cycle is:  
                                              
Tstartup is the start-up time for the communication. (Tio+Tcomm) is the time cost to transfer one matrix element 
between two Dryad vertices via the file pipe. We take Tio into account because Dryad usually uses the file pipe 
(NTFS temporary file) to transfer the intermediate data over the HPC cluster. Our experiment results show that the 
IO overhead makes up 40% of the overall overhead of point to point communication operation within Dryad.  
     In order to build accurate analytical model, we need further determine the overlap between communication and 
computation of the PMM application. In the multiplication stage, the MKL BLAS program within the user-defined 
function can be invoked immediately after getting the input data, and there is no need to wait for the whole 
broadcasting process to be finished. As shown in Figure 3, some communication of one process is overlapped with 
the computation of other processes. In the idea execution flow, due to the symmetry of the PMM algorithm, the 
communication overhead of one process over √N iterations are successively: 0, m2*(Tio+Tcomm), 2*m2*(Tio+Tcomm), 
... (√N-1)*m2*(Tio+Tcomm). Given these factors, we defined the average long term overhead of broadcasting one sub-
matrix A of one process as: 
                                                          (1) 
The process to “roll” sub-matrix B can be done in parallel with Dryad tasks as long as the aggregated requirement of 
the network bandwidth is satisfied by the switch. The overhead of this step is: 

              (2) 
The time taken to compute the sub-matrix product (including multiplication and addition) is: 

     (3) 
Before summing up the overhead list above to calculate the overall job turnaround time, we noticed that the average 
scheduling overhead, (N+1)/2*Tscheduling, was much larger than the communication start-up overhead, 

, which can be eliminated in the model. Finally, we defined the analytical timing model of the 
Dryad implementation of the PMM as the following formula.  

    (4) 

                (5)  
In addition, we defined parallel efficiency  and parallel overhead  as in Equations 6) and 7). The deduction of 
Equation 6) is based on the hypothesis  for the large matrices. Equation 7) shows that the 

parallel overhead  is linear in , as  can be considered consistent for different N and M. 

        (6) 

        (7) 
We also implemented PMM with MS.MPI and proposed the corresponding analytical model. The main difference 
between the MS.MPI and Dryad implementations lies in the step to broadcast sub-matrix A among the √N tasks. 
MS.MPI utilizes the binomial tree algorithm in order to implement the broadcast operation, the total number of 
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messages that the root sends is log2
N, where N is the number of processes. According to the Hockney model, the 

communication overhead of the MS.MPI broadcasting is Tstart-up +log2
N *m2*Tcomm. The average long-term overhead 

of broadcasting one sub-matrix A of the MS.MPI implementation of the PMM is defined as the Equation (8). The 
job turnaround time of the MS.MPI implementation of the PMM and corresponding parallel overhead  is defined 
as Equation (9) and (10).The deduction process is similar with that of the Dryad implementation of PMM. Table 2 
summarizes the performance equations of the broadcast algorithms of the three different implementations. In order 
to make a comprehensive comparison, we also included an analysis for Geoffrey Fox’s implementation in 1987. 

        (8) 

     (9) 

        (10) 
 

Implementation Broadcast algorithm Broadcast overhead 
of N processes 

Converge rate of parallel 
overhead 

Fox Pipeline Tree M2*Tcomm 
 

MS.MPI Binomial Tree log2
N*M2*Tcomm 

 
Dryad Flat Tree N*M2*(Tcomm + Tio) 

 
Table 2: Analysis of Broadcast algorithms of different implementations 

 
5 Experimental Analysis of  Performance Model 

 
     In order to verify the soundness of the proposed analytical model (Equations 7 and 9), we investigated the 
consistency of Tcomm/Tflops using different numbers of nodes and problem sizes. The Tcomm/Tflops was linear 
rising term of fitting function of parallel overhead. We measured the turnaround time of the parallel matrix 
multiplication jobs to calculate parallel efficiency and parallel overhead as defined in Equations 5) and 6). The 
sequential time of the matrix multiplication jobs is the turnaround time of sequential Intel MKL BLAS jobs.  

 
(a) Dryad PMM 3x3 nodes  (b) Dryad PMM 4x4 nodes (c) Dryad PMM 5x5 nodes 

 
      (d) MS.MPI PMM 3x3 nodes                 (e) MS.MPI PMM 4x4 nodes            (f) MS.MPI PMM 5x5 nodes 
Figure 4: (a)(b)(c) plots parallel overhead vs. (√N*(√N+1))/(4*M) of Dryad PMM using different number of nodes 
on Tempest. (d)(e)(f) plot parallel overhead vs (√N*((1+log2√N))/(4*M) of MS.MPI PMM on Tempest.  
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     Figures 4(a)(b) and (c) depicts the parallel overhead vs. (√N*(√N+1))/(4*M) of the Dryad PMM using different 
numbers of nodes and problem sizes on Tempest. The results show that parallel overhead  is linear in small 
(√N*(√N+1))/(4*M) (large matrices) which proves the correctness of Equation 7). The error between the linear 
rising term plotted in Figure 4(a)(b) and (c) and the direct measurement of (Tio+Tcomm)/Tflops is 1.4%, 2.8%, and 
3.08%, respectively. One should note that the linear rising term plotted in Figure 4(a)(b) and (c) include other 
overhead, such as synchronization, runtime fluctuation, and software latency. Overall, the communication costs will 
dominate those overhead as the matrices sizes increasing. Figures 4(d)(e) and (f) depicts the parallel overhead vs. 
(√N*((1+log2√N))/(4*M) of the MS.MPI implementation of PMM using different number of nodes and problem 
sizes. The error between linear rising term of fitting function plotted in (d)(e)(f) and their corresponding 
measurement of Tcomm/Tflops are also small than 5%. The fitting functions in Figures (d)(e)(f) indicated parallel 
overhead  is linear in (√N*((1+log2√N))/(4*M) which proves that the function form of Equation 7) is correct.  
     We further verify the proposed analytical timing model by comparing the measured and modelled job running 
times. Frist, we measured the overhead parameters, which included Tstartup, Tcommunication, Tio, Tscheduling, 
and Tflops as discussed in the proposed analytical model. Then we calculated the modelled job running using 
Equation (5) and (9) with the measured parameters. Figures 6 (a)(b)(c)(d)(e) and (f) depict the comparison between 
the measured and modelled results of the PMM jobs of various problem sizes using different runtime environments.  
       

 
(a) Dryad 25x1 (20Gbps)  (b) Dryad 25x16 (20Gbps)   (c) Dryad Azure (100Mbps) 

 
(d) MS.MPI Tempest (20Gbps)         (e) IntelMPI Quarry (10Gbps)  (f)  OpenMPI Odin (10Gbps) 

Figure 6: comparisons of measured and modelled job running time using different runtime environments. (a) Dryad 
PMM on 25 nodes on Tempest with 20Gbps network. (b) Dryad PMM with 25nodes with 16 cores per node on 
Tempest with 20Gbps network. (c) Dryad PMM on 100 small instances on Azure with 100Mbps network. (d) 
MS.MPI PMM on 25 nodes on Tempest with 20Gbps network. (e) IntelMPI PMM on 100 nodes on Quarry with 
10Gbps network. (f) OpenMPI PMM on 100 nodes with 10Gbps network.  
 
     Figure 6 (a) showed that the relative errors between the modelled and measured values are less than 5% for 
problem sizes larger than 30000 which verify the correctness of Equation (5). However, experiments in Figure 6 (a) 
only used single core per node which is not the practical way of maximizing resources utilization. To explore the 
multi-core computing power, we used parallel version of Intel MKL BLAS for the experiments. The experiments 
results show that the average speed-up of parallel MKL jobs using 8, 16, 24 cores are 6.14, 11.16, and 15.19 
respectively. The low parallel efficiency using multiple cores is due to serious memory bandwidth contentions of 
parallel MKL routine on Tempest node, which was reported in paper [22]. Because our analytical performance 
model did not model parallel overhead of multi-core code on shared memory machines, we simplify the problem by 
considering multi-core as single-core with aggregated Gflops performance. Figure 6(b) showed the relative error 
between modelled and measured job running time is less than 8% which indicated the correctness of Equation (5) 
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for the multicore case. The larger relative error in Figure 6 (b) than that in Figure 6 (a) is because the faster the 
Tflops is the more accuracy requirement for modelling Tcomm+Tio will have. Figure 6(c) showed the same 
experiments using 100 small instances on Azure. The relative error showed in Figure 6(c) is much larger Figure 
6(a)(b) because our model did not consider the network, runtime, OS jitter in cloud platform. For example, we found 
the serious network or CPU contention in several runs of our PMM jobs when there are other jobs scheduled on the 
same physical resources.  
     Figures 6 (d)(e) and (f) plot measured and modelled job running time of MS.MPI, IntelMPI, and OpenMPI 
implementations of PMM jobs using 25, 100, and 100 nodes on Tempest, Quarry, and Odin clusters, respectively. 
Figure 6 (d)(e) showed that the relative errors between the modelled and measured values are less than that of Dryad 
implementation for most larger problem sizes which further verifies the correctness of Equation (9). The higher 
accuracy of modelled job running time of MS.MPI and IntelMPI implementations is because the runtime latency 
and overhead of MPI is smaller than that of Dryad. Figure 6(f) showed the same experiments using 100 nodes on the 
Odin cluster. The relative error for problem size between 12000 and 48000 indicated that the proposed analytical 
model of OpenMPI implementation of PMM still hold when using 100 nodes as long as the aggregated network 
bandwidth requirement are satisfied. However, the relative error increase dramatically when problem size larger 
than 48000 because of the serious network contention of the OpenMPI implementation of PMM application. In fact, 
when using 100 nodes to run PMM jobs, there are 10 subgroups to conduct MPI_Bcast operations in parallel. Our 
current proposed analytical model cannot model this network contention and just consider the scenarios that network 
contention does not exist when running PMM jobs. Table 3 summarizes the parameters of analytical model of 
different runtime environments and equations of analytical model of PMM jobs using those runtime environments. 
 

Runtime 
environments 

#nodes 
#cores 

Tflops Network Tio+comm  (Dryad)    
Tcomm        (MPI) 

Equation of analytic model 

Dryad Tempest 25x1 8.64*109 20Gbps 8.87*106 6.764*10-8*M2+9.259*10-12*M3 

Dryad Tempest 25x16 82.03*109 20Gbps 10.27*106 6.764*10-8*M2+9.192*10-13*M3 
Dryad Azure 100x1 6.98*109 100Mbps 6.17*106 8.913*10-8*M2+2.865*10-12*M3

 

MS.MPI Tempest 25x1 8.64*109 1Gbps 10.73*106 3.727*10-8*M2+9.259*10-12*M3
 

MS.MPI Tempest 25x1 8.64*109 20Gbps 18.17*106 2.205*10-8*M2+9.259*10-12*M3 
IntelMPI Quarry 100x1 8.73*109 10Gbps 15.62*106 3.37*10-8*M2+6.06*10-12*M3 
OpenMPI Odin 100x1 3.35*109 10Gbps 16.71*106 3.293*10-8*M2+2.29*10-12*M3 

Table 3: Analytic model parameters of different runtime environment 

6 Summary and Conclusion 

      In this paper, we discussed how to analyse the influence of the runtime and communication overhead on making 
the analytical model for parallel program in different runtime environments. We showed the algorithm of collective 
communication operations and overlap between communication and computation are two important factors when 
modelling communication overhead of parallel programs run on data flow graph runtime.    
      We proposed the analytic timing model of Dryad implementations of PMM in realistic settings which is more 
general than empirical and semi-empirical models. We extend the proposed analytical model to MPI 
implementations, and make comprehensive comparison between the Dryad and MPI implementations of PMM in 
different runtime environments. We conducted experimental analyses in order to verify the correctness of our 
analytical model on a Windows cluster with up to 400 cores, Azure with up to 100 instances, and Linux cluster with 
up to 100 nodes. The final results show that our analytic model produces accurate predictions within 5% of the 
measured results. Another key result we found is the Dryad and MPI implementations of nontrivial parallel 
programs, such as PMM, may not scale well due to the behaviour of their collective communication implementation 
or the limitation of network bandwidth. Our current analytical timing model does not consider the network 
contention case which requires some further study in future work.  
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