
licenselicense LGPL-3.0LGPL-3.0 jsDelivr 0	hits/month Visual	Studio	MarketplaceVisual	Studio	Marketplace v0.5.0v0.5.0

docsdocs passingpassing issuesissues 1	open1	open starsstars 22 npm	packagenpm	package 2.1.1442.1.144 apm v0.7.0

docker	pullsdocker	pulls 214214

QCObjects

Welcome to QCObjects Main Reference Documentation!
Check the official page of QCObjects at https://qcobjects.dev

Cross Browser Javascript Framework for MVC
Patterns

QCObjects is a javascript framework designed to make easier everything about the MVC
patterns implementation into the pure javascript scope. You don't need to use typescript nor
any transpiler to run QCObjects. It runs directly on the browser and it uses pure javascript with
no extra dependencies of code. You can make your own components expressed in real native
javascript objects or extend a native DOM object to use in your own way. You can also use
QCObjects in conjunction with CSS3 frameworks like Foundation, Bootstrap and mobile
javascript frameworks like PhoneGap and OnsenUI (https://onsen.io)

https://github.com/QuickCorp/QCObjects/blob/master/LICENSE.txt
https://www.jsdelivr.com/package/npm/qcobjects
https://marketplace.visualstudio.com/items?itemName=Quickcorp.QCObjects-vscode
http://qcobjects.readthedocs.io/?badge=latest
https://github.com/QuickCorp/QCObjects/releases/
https://github.com/QuickCorp/QCObjects
https://badge.fury.io/js/qcobjects
https://qcobjects.dev/
https://qcobjects.dev/
https://qcobjects.dev/
https://qcobjects.dev/
https://qcobjects.dev/
https://qcobjects.dev/
https://foundation.zurb.com/
http://getbootstrap.com/
https://phonegap.com/
https://onsen.io/

Table of Contents
QCObjects

Cross Browser Javascript Framework for MVC Patterns
Table of Contents
ALPHA RISE Startup
ECMA-262 Specification
Copyright
Demo

Demo Using Foundation
Demo Using Materializecss
Demo Using Raw CSS
Another Basic Demo example: The simpliest demo example:

Fork
Become a Sponsor
Check out the QCObjects SDK
Donate
Installing

Using QCObjects with Atom:
Using QCObjects in Visual Studio Code:
Installing with NPM:
Installing the docker playground:

#qcobjects
#cross-browser-javascript-framework-for-mvc-patterns
#table-of-contents
#alpha-rise-startup
#ecma-262-specification
#copyright
#demo
#demo-using-foundation
#demo-using-materializecss
#demo-using-raw-css
#another-basic-demo-example-the-simpliest-demo-example
#fork
#become-a-sponsor
#check-out-the-qcobjects-sdk
#donate
#installing
#using-qcobjects-with-atom
#using-qcobjects-in-visual-studio-code
#installing-with-npm
#installing-the-docker-playground

Using the development version code in the straight way into HTML5:
Using the CDN minified version code from jsDelivr CDN

Reference
Essentials

QC_Object
ComplexStorageCache
asyncLoad
Class
QC_Append, append method
The _super_ method
New
InheritClass
_Crypt
GLOBAL
CONFIG
waitUntil
Package
Import
Export
Cast
Tag
Ready
Component Class
Component HTML Tag
Controller
View
VO
Service
serviceLoader
JSONService
ConfigService
SourceJS
SourceCSS
ArrayList
ArrayCollection
Effect
Timer

SDK
Quick Start

Step 1: Start creating a main import file and name it like: cl.quickcorp.js. Put it into
packages/js/ file directory
Step 2: Then create some services inhereting classes into the file

#using-the-development-version-code-in-the-straight-way-into-html5
#using-the-cdn-minified-version-code-from-jsdelivr-cdn
#reference
#essentials
#qc_object
#complexstoragecache
#asyncload
#class
#qc_append-append-method
#the-%5C_super%5C_-method
#new
#inheritclass
#%5C_crypt
#global
#config
#waituntil
#package
#import
#export
#cast
#tag
#ready
#component-class
#component-html-tag
#controller
#view
#vo
#service
#serviceloader
#jsonservice
#configservice
#sourcejs
#sourcecss
#arraylist
#arraycollection
#effect
#timer
#sdk
#quick-start
#step-1-start-creating-a-main-import-file-and-name-it-like-clquickcorpjs-put-it-into-packagesjs-file-directory
#step-2-then-create-some-services-inhereting-classes-into-the-file-jspackagesclquickcorpservicesjs-

js/packages/cl.quickcorp.services.js :
Step 3: Now it's time to create the components (cl.quickcorp.components.js)
Step 4: Once you have done the above components declaration, you will now want to
code your controllers (cl.quickcorp.controller.js)
Step 5: To use into the HTML5 code you only need to do some settings between
script tags:

ALPHA RISE Startup

QCObjects was invited to exhibit as an ALPHA Startup in the RISE Conf Hong Kong 2019.
RISE attracts the most dynamic startups from around the world. We'll be showing how
QCObjects is making a real Global Impact to the JavaScript developers life transforming the
way for coding.

If you want to find out more about RISE event check out their website https://riseconf.com

ECMA-262 Specification

See
ECMAScript® 2020 Language Specification for reference

#step-2-then-create-some-services-inhereting-classes-into-the-file-jspackagesclquickcorpservicesjs-
#step-3-now-its-time-to-create-the-components-clquickcorpcomponentsjs
#step-4-once-you-have-done-the-above-components-declaration-you-will-now-want-to-code-your-controllers-clquickcorpcontrollerjs
#step-5-to-use-into-the-html5-code-you-only-need-to-do-some-settings-between-script-tags
https://qcobjects.dev/
https://qcobjects.dev/
https://riseconf.com/
https://tc39.github.io/ecma262/#sec-intro

Copyright

Copyright (c) Jean Machuca and QuickCorp info@quickcorp.cl

Demo

Demo Using Foundation

Check out a demo using Foundation components here:
Demo Using Foundation

Demo Using Materializecss

Check out a demo using MaterializeCSS here:
Demo Using Materializecss

Demo Using Raw CSS

Check out a demo using raw CSS:
Demo Using Raw CSS

Another Basic Demo example: The simpliest demo
example:

<!DOCTYPE	html>
<html>
				<head>
								<title>Demo</title>
								<script	type="text/javascript"	src="https://qcobjects.dev/QCObjects.js"></script>
								<script	type="text/javascript">
												var	canvas1,canvas2,canvas3,container;
								CONFIG.set('relativeImportPath','src/');

												/**
													*	Main	import	sentence.
													*/
												Import('cl.quickcorp',function	(){

																/**
																	*	Super	Container	MyOwnBody

https://quickcorp.org/
mailto:info@quickcorp.cl
https://github.com/QuickCorp/quickobjects_sample1foundation
https://qln.link/
https://github.com/QuickCorp/qcobjects_profile_browser

																	*/
																Class('MyOwnBody',HTMLBodyElement,{
																				customAttr:'custom',
																				body:document.body		//	breakes	default	body	element	and	replace	with	them
																});

																/**
																	*	Another	custom	class	definition
																	*/
																Class('MyContainer',HTMLElement,{
																				width:400,
																				height:400,
																				customAttr:'custom	attr	container'
																});

																/**
																	*	Another	custom	class	definition
																	*/
																Class('canvas',HTMLCanvasElement,{
																				customAttr:'custom'
																});

																/**
																	*	Another	custom	class	definition
																	*/
																Class('MyCanvas2',HTMLCanvasElement,{});

																body	=	New(MyOwnBody);	//	binds	to	body
																body.css({backgroundColor:'#ccc'});

																container	=	Tag('container')[0].Cast(MyContainer);	//	cast	any	javascript	dom	object	to	QC_Object	class
																container.css({backgroundColor:'red'});	//	access	binding	in	two	directions	to	dom	objects

																/**
																	*	Instance	a	new	custom	canvas
																	*/
																canvas1	=	New(canvas,{
												width:100,
												height:100,
										});
																canvas2	=	New(canvas,{
												width:200,
																				height:100,
										});
																canvas3	=	New(canvas,{
												width:300,
																				height:50,
										});

																canvas1.css({backgroundColor:'#000000'});	//	like	jquery	and	another	style	access
										canvas1.body.style.backgroundColor='#000000';	//	standard	javascript	style	access
																canvas2.body.style.backgroundColor='#0044AA';	//	standard	javascript	style	access
																canvas3.body.style.backgroundColor='green';	//	standard	javascript	style	access

																canvas1.append();	//append	canvas1	to	body

																canvas2.attachIn('container');	//	attach	or	append	to	specific	tag	containers
																container.append(canvas3);	//	append	canvas3	to	custom	tag	binding

//																canvas1.body.remove();	//	remove	canvas1	from	dom
																body.append(canvas3);	//	append	canvas3	to	body

										//	using	components
										var	c1	=	New(Component,{'templateURI':'templatesample.html',cached:false});
										document.body.append(c1);	//	appends	the	c1	to	the	body

												});

								</script>
				</head>
				<body>
								<container	id="contentLoader"	></container>
				</body>
</html>

Fork

Please fork this project or make a link to this project into your README.md file. Read the
LICENSE.txt file before you use this code.

Become a Sponsor

If you want to become a sponsor for this wonderful project you can do it here

Check out the QCObjects SDK

You can check out the QCObjects SDK and follow the examples to make your own featured
components

Donate

If you like this code please DONATE!

https://sponsorsignup.qcobjects.dev/
https://sdk.qcobjects.dev/
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=UUTDBUQHCS4PU&source=url

Installing

Using QCObjects with Atom:

>	apm	install	qcobjects-syntax

https://atom.io/packages/qcobjects-syntax

Using QCObjects in Visual Studio Code:

Visual	Studio	MarketplaceVisual	Studio	Marketplace v0.5.0v0.5.0

https://marketplace.visualstudio.com/items?itemName=Quickcorp.QCObjects-vscode

Installing with NPM:

>	npm	install	qcobjects-cli	-g	&&	npm	install	qcobjects	--save

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=UUTDBUQHCS4PU&source=url
https://atom.io/packages/qcobjects-syntax
https://marketplace.visualstudio.com/items?itemName=Quickcorp.QCObjects-vscode
https://marketplace.visualstudio.com/items?itemName=Quickcorp.QCObjects-vscode

Installing the docker playground:

docker	pull	-a	quickcorp/qcobjects	&&	docker	run	-it	--name	qcobjects-playground	--rm	-it	quickcorp/qcobjects

Using the development version code in the straight
way into HTML5:

<script	type="text/javascript"	src="https://qcobjects.dev/QCObjects.js"></script>

Using the CDN minified version code from jsDelivr
CDN

<script	src="https://cdn.jsdelivr.net/npm/qcobjects@2/QCObjects.min.js"></script>

Reference

Essentials

Here are the essentials symbols and concepts of QCObjects Reference

QC_Object

Basic Type of all elements

ComplexStorageCache

With CompletStorageCache you can handle a cache for any object and save it in the local
storage.

Usage:

var	cache	=	new	CompletStorageCache({
																						index:object.id,	//	Object	Index
																						load:(cacheController)=>{},	//	A	function	to	execute	for	the	first	time
																						alternate:	(cacheController)=>{}	//	The	alternate	function	to	execute	from	the	second	time	the	source	coude	is	loaded
																						});

https://qcobjects.dev/

Example:

var	dataObject	=	{id:1,
																		prop1:1,
																		prop2:2
																};

var	cache	=	new	ComplexStorageCache({
				index:	dataObject.id,
				load:	(cacheController)	=>	{
						dataObject	=	{
														id:dataObject.id,
														prop1:dataObject.prop1*2,	//	changing	a	property	value
														prop2:dataObject.prop2
												};
						return	dataObject;
				},
				alternate:	(cacheController)	=>	{
						dataObject	=	cacheController.cache.getCached(dataObject.id);	//	setting	dataObject	with	the	cached	value
						return;
				}
		});

//	Next	time	you	can	get	the	object	from	the	cache
var	dataObjectCopyFromCache	=	cache.getCached(dataObject.id);
console.log(dataObjectCopyFromCache);	//	will	show	the	very	same	object	value	than	dataObject

asyncLoad

The asyncLoad function loads a code once in async mode. This is useful to asure some initial
process don't replicate its execution and aren't loaded after sensitive code.

Usage:

asyncLoad(()=>{
		//	my	code	here
},args);
//	Where	args	is	an	array	of	arguments,	it	can	be	the	"arguments"	special	object

Example:

let	doSomething	=	(arg1,arg2)=>{
		asyncLoad((arg1,arg2)=>{
				console.log(arg1);

				console.log(arg2);
		},arguments);
};

doSomething(1,2);	//	the	code	of	doSomething	will	be	executed	once	after	the	rest	of	asyncLoad	queue	of	functions	and	before	the	execution	of	Ready	event.

Class

This is NOT the class definition of ECMAScript 2015 (see class ECMAScript 2015 for
reference).

Class is a special function to help you to declare a class in an easier and compatible way. It
works cross-browser, and I hope ECMA could adopt something like that in the future. To let
javascript not to be confuse about this, QCObjects uses "Class" not "class" (note the Camel
Case).

Usage:

Class('MyClassName',MyClassDefinition);

Where MyClassDefinition is an object with a QCObjects prototype

Example:

Class('MyClassName',InheritClass,{
		propertyName1:0,	//	just	to	declare	purpose
		propertyName2:'',
		classMethod1:	function	(){
				//	some	code	here
				//	note	you	can	use	"this"	object
				return	this.propertyName1;
		},
		classMethod2:	function	()	{
				//	some	code	here
				return	this.propertyName2;
		}
});

var	newObject	=	New(MyClassName,{
				propertyName1:1,	//	this	initializes	the	value	in	1
				propertyName2:"some	value"
});
console.log(newObject.classMethod1());	//	this	will	show	number	1
console.log(newObject.classMethod2());	//	this	will	show	"some	value"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://qcobjects.dev/

QC_Append, append method

This is a special method inserted to make your life easier when you want to dynamically
manipulate the DOM. You can insert even a Component, a QCObjects Object or a DOM
Element inside another HTMLElement.

Usage:

[element].append([object	or	element]);

Example:

//	This	will	create	a	QCObjects	class	named	"canvas"	extending	a	HTMLCanvasElement	with	a	customAttr	property	that	has	a	"custom"	value
Class('canvas',HTMLCanvasElement,{
		customAttr:'custom'
});

//	This	will	declare	an	instance	canvas1	from	the	class	canvas
let	canvas1	=	New(canvas,{
												width:100,
												height:100,
										});

//	This	will	append	the	canvas1	object	to	the	document	body
document.body.append(canvas1);

The _super_ method

When you extend a QCObjects class from another one, you can use _super_ method to get an
instance from the main class definition.

Usage:

super('MySuperClass','MySuperMethod').call(this,params)
//	where	this	is	the	current	instance	and	params	are	method	parameters

Example:

Class('MySuperiorClass',InheritClass,{
		propertyName1:0,	//	just	to	declare	purpose
		propertyName2:'',
		classMethod1:	function	(){
				//	some	code	here
				//	note	you	can	use	"this"	object
				return	this.propertyName1;
		},
});

Class('MyClassName',MySuperiorClass,{
		propertyName1:0,	//	just	to	declare	purpose
		propertyName2:'',
		classMethod2:	function	()	{
				//	The	next	line	will	execute	classMethod1	from	MySuperiorClass
				//	but	using	the	current	instance	of	MyClassName1
				return	_super_('MySuperiorClass','classMethod1').call(this);
		}
});

var	newObject	=	New(MyClassName,{
				propertyName1:1,	//	this	initializes	the	value	in	1
				propertyName2:"some	value"
});
console.log(newObject.classMethod2());	//	this	will	show	the	number	1

New

Creates an object instance of a QCObjects class definition.

Usage:

let	objectInstance	=	New(QCObjectsClassName,	properties);
//	where	properties	is	a	single	object	with	the	property	values

NOTE: In the properties object you can use single values or getter as well but they will be
executed once.

Example:

Class('MyCustomClass',Object);
let	objectInstance	=	New(MyCustomClass,{
		prop1:1,
		get	randomNumber(){	//	this	getter	will	be	executed	once
				return	Math.random();

		}
});

console.log(objectInstance.randomNumber);	//	it	will	show	console.log(objectInstance.prop1);	//	it	will	show	number	1

InheritClass

A single common used QCObjects class definition.

_Crypt

With _Crypt you can encode serializable objects by a passphrase

Example (1):

	var	_string	=	New(_Crypt,{string:'hello	world',key:'some	encryption	md5	key'});
	console.log(_string._encrypt());
	console.log(_string._decrypt());	//	decodes	encrypted	string	to	the	source

Example (2):

	_Crypt.encrypt('hola	mundo','12345678866');
	_Crypt.decrypt('nqCelFSiq6Wcpw==','12345678866');

GLOBAL

GLOBAL is a special QCObjects class to reach the global scope. It has a set and a get method
to help you to manage the internal GLOBAL properties.

Example:

GLOBAL.set('globalProperty1','some	value	in	global	scope');
var	globalProperty1	=	GLOBAL.get('globalProperty1');

CONFIG

CONFIG is a smart class that manages the global settings of your application. You can get the
properties either from a config.json or from the memory previously saved by a set() call.

Usage from memory:

1.- In your initial code set the CONFIG initial values:

CONFIG.set('someSettingProperty','some	initial	value');

2.- Then you can access it from anywhere in your code by using the get method:

var	someSettingProperty	=	CONFIG.get('someSettingProperty');

Usage from config.json:

1.- You need to indicate first that you are using a config.json file by setting the
"useConfigService" value to true

CONFIG.set('useConfigService',true);	//	using	config.json	for	custom	settings	config

2.- Once you have set the value above QCObjects will know and look to the next CONFIG
settings into the file config.json in the basePath folder of your application.

Usage from an encrypted config.json:

There is also a way to use an encrypted config.json file in order to protect your settings robots
that can steal unprotected data from your web application (like API keys web crawlers).

To encrypt your json file go to https://config.qcobjects.dev, put your domain and the
config.json content. The tool will encrypt your json and you can copy the encrypted content to
insert it in your config.json file. QCObjects will know the data is encrypted and the process to
decode the data will be transparent for you.

waitUntil

waitUntil is a helper just in case you are in trouble trying to run a code before a condition is
true. The code inside waitUntil will be executed once.

https://config.qcobjects.dev/

NOTE: This is useful in some cases but an excessive use is not recommended.

Usage:

waitUntil(()=>{
		//	the	code	that	will	be	executed	after	the	condition	is	true
},()=>{return	condition;});
//	where	condition	is	what	I	want	to	wait	for

Example:

let	someVar	=	0;
waitUntil(()=>{
		console.log('someVar	is	present');
},()=>{return	typeof	someVar	!=	'undefined';});
//	where	condition	is	what	I	want	to	wait	for

Package

Defines a QCObjects package and returns it.

Usage:

Package('packageName',[packageContent]);

Where packageContent is an array of QCObjects Classes. If you only pass the packageName
param you will get the previously declared package content.

Example (1):

'use	strict';
Package('org.quickcorp.main',[
		Class('Main',InheritClass,{
				propertyName1:'propertyValue1',
		}),
		Class('MyCustomClass',InheritClass,{
				propertyName2:'propertyValue2',
		}),
]);

Example (2):

let	mainPackage	=	Package('org.quickcorp.main');	//	this	will	return	the	previously	declared	content	of	package	'org.quickcorp.main'
//	mainPackage[0]	will	be	the	Main	class	definition.
//	This	is	useful	for	code	introspection

Import

Imports a package from another JS file

Usage:

Import	(packagename,[ready],[external]);

Where packagename is the name of the package, ready is a function that will be executed
after the package is loaded, and external is a boolean value that indicates if the JS file is in the
same origin or it is from another external resource.

Example (1):

Import('org.quickcorp.main');

The above code will try to import a JS fila named 'org.quickcorp.main.js' from the path
specified in the relativeImportPath settings value present in your CONFIG. Inside the JS file
you have to define a package by using Package('org.quickcorp.main',[Class1, Class2…])

Example (2):

Import('org.quickcorp.main',function	(){
		console.log('remote	import	is	loaded');
},true);

The above code this time is trying to load the same package but using an external path
defined by the remoteImportsPath setting present in your CONFIG

NOTE: In both examples above you have not use or specify the ".js" extension. This it's used

by default and can't be changed by security reasons.

Export

Put a symbol (var or function) in the global scope.

Usage:

Export('name	of	symbol');

Example:

(()=>{
		//	this	is	local	scope
		let	someFunction	=	(someLocalParam)=>{
				console.log(someLocalParam);
		};
		Export(someFunction);	//	now,	someFunction	is	in	the	top	level	scope.
})();

//	this	is	the	top	level	scope
someFunction('this	works');

Cast

Use the Cast method of any DOM element to get the properties of another type of object. This
is useful to transform an object type to another giving more flexibility in your code.

Usage:

let	resultObject	=	[element	or	QCObjects	type].Cast(objectToCastFrom);

Where objectToCastFrom is an object to get the properties from and put it into the result
object returned by Cast.

Example:

Class('MyOwnClass',{
		prop1:'1',
		prop2:2
});

let	obj	=	document.createElement('div').Cast(MyOwnClass);

The above code will create a DOM object and Cast it to MyOwnClass. Because of
MyOwnClass is a QCObjects type class, obj will now have a prop1 and prop2 properties, and
will now be a QCObjects object instance with a body property that is a div element.

Tag

Tag is a useful function to select any DOM element using selectors. Tag will always return a list
of elements, that you can map, sort, and filter as any other list.

Usage:

var	listOfElements	=	Tag(selector);

Where selector is a DOM query selector.

Example:

<!DOCTYPE	html>
<html>
				<head>
								<title>Demo</title>
								<script	type="text/javascript"	src="https://qcobjects.dev/QCObjects.js"></script>
				</head>
				<body>
				<div	class="myselector">
				<p>Hello	world</p>
				</div>
				<script>
				Ready(()=>{
						Tag('.myselector	>	p').map((element)=>{
								element.innerHTML	=	'Hello	world!	How	are	you?';
						});
				});
				</script>
				</body>
</html>

In the above code, a paragraph element was created inside a div with a css class named
myselector by html, and then is modified dynamically using the QCObjects Tag function. If you
are familiar with query selector frameworks like JQuery, you will love this one.

Ready

Assign a function to run after everything is done by QCObjects and after the window.onload
event. Use it to prevent 'undefined' DOM objects error.

Usage:

Ready(()=>{
		//	My	init	code	here!
});

Note that if you define dynamic components by using a HTML "component" tag, the dynamic
content load will not trigger Ready events. To catch code everytime a dynamic component is
loaded, use a Controller done method instead.

You will use Ready implementation mostly when you want to implement QCObjects in
conjunction with another framework that needs it.

Component Class

A QCObjects class type for components.

Properties

[Component].domain
Returns a string with the domain of your application. It is automatically set by QCObjects at
the load time.

[Component].basePath
Returns a string with the base path url of your application. It is automatically set by QCObjects
at the load time.

NOTE: If you want to change the components base path, you have to use
CONFIG.set('componentsBasePath','new
path
relative
to
the
domain') in your init code.

[Component].templateURI
Is a string representing the component template URI relative to the domain. When is set, the
component will load a template and append the inner content into the body childs as a part of
the DOM. To set this property, it is recommended to use the ComponentURI helper function.

[Component].tplsource
Is a string representing the source where the template will be loaded. It can be "default" or
"none". A value of "default" will tell QCObjects to load the template from the templateURI
content. A value of "none" will tell QCObjects not to load a template from anywhere.

[Component].url
Is a string representing the entire url of the component. It is automatically set by QCObjects
when the component is instantiated.

[Component].name
Is a string representing the name of a component. The name of a component can be any
alphanumeric value that identifies the component type. It will be internally used by
ComponentURI to build a normalised component template URI.

[Component].method
Is a string representing a HTTP or HTTPS method. By default, every component is set to use
the "GET" method. In the most of cases, you don't need to change this property.

[Component].data
Is an object representing the data of the component. When QCObjects loads a template, it will
get every property of data object and bind it to a template label representing the same
property inside the template content between double brakets (example: {{prop1}} in the
template content will represent data.prop1 in the component instance).
NOTE: To refresh the data bindings it is needed to rebuild the component (see the use of
[Component].rebuild() method for more details).

[Component].reload
Is a boolean value that tells QCObjects when to force reload the content of a component from
the template or not. If its value is true, the template content will be replacing the current DOM
childs of the component body element. If its value is false, the template content will be added
after the las component body child.

[Component].cached
Is a boolean value that tells QCObjects if the component needs to be cached or not. When a
component is cached, the template content loaded from templateURI will be loaded once. You
can set this property either as a static property of the Component Class to set the default
value for every next component object instance, or setting the individual value of the property
in every component definition. In a world where the performance matters, to give more

flexibility to the cache behaviour is needed more than ever.

[Component].routingWay
Returns a string representing the routing way. Its value can be "hash", "pathname" or
"search".
NOTE: To change the routingWay of every component it is recommended to use
CONFIG.set('routingWay','value of a valid routing way') in your init code.

[Component].validRoutingWays
Returns a list representing the valid routing ways. QCObjects uses this to internally validate
the routingWay which was used to build the component routings.

[Component].routingNodes
Returns a NodeList object representing the list of nodes that were loaded by the component
routing builder.

[Component].routings
Returns a list with the component routings built when the component was instantiated.

[Component].routingPath
Returns a string representing the current routing path

[Component].routingSelected
Returns an object representing the current routing of the component

[Component].subcomponents
Returns a list of components that are childs of the component instance.

[Component].body
Is a DOM element representing the body of the component.
NOTE: Every time a component body is set, it will trigger the routings builder for this
component.

Methods

[Component].set('prop',value)
Sets a value for a component property.

[Component].get('prop')
Returns the value of a component property

[Component].rebuild()
Rebuilds the component. It will force a call for the componentLoader with this component

when it's needed.

[Component].Cast(ClassName or ComponentClassName)
Returns the cast of a component definition into another one. This is useful to dynamically
merge components definitions.

[Component].route()
Forces the component routings builder to reload the routings of the component. This will result
in a rebuild call when it's needed.

[Component].fullscreen()
Puts the component in fullscreen mode.

[Component].closefullscreen()
Closes the fullscreen mode.

[Component].css(css object)
Sets the css properties for the component.

[Component].append(component or QCObjects object)
Appends a component as a child of the current component body

[Component].attachIn(selector)
Attaches a current component body to any element in the given selector.

Component HTML Tag

Is a HTML tag representation of a component instance. Every declaration of a 	<component>
</component>	 tag will generate a related instance of a QCObjects component. While a
component tag is not an instance itself, you can even define some instance properties by
setting the related tag attribute when it is available.

Available attributes

Below is a list of the available attributes for a component tag

The name Attribute

	<component	name>	

Sets the name of the related component instance built by QCObjects.

Usage:

<component	name="name_of_component"></component>

Example:

<!--	index.html	-->
<!DOCTYPE	html>
<html>
				<head>
								<title>Demo</title>
								<script	type="text/javascript"	src="https://qcobjects.dev/QCObjects.js"></script>
				</head>
				<body>
						<!--	this	will	load	the	contents	of	./templates/main[.tplextension]	file	-->
						<component	name="main"></component>
				</body>
</html>

The cached Attribute

	<component	cached>	

Sets the cached property if the related instance of a component.

NOTE: Only a value of "true" can be set in order to tell QCObjects that the component
template content has to be cached. Any other value will be interpreted as false.

Usage:

<component	name="name_of_component"	cached="true"></component>

The data property tag declaration

	<component	data-property1	data-property2	...>	

Sets a static value of a property for the data object in the component instance.

NOTE: Data property tag declaration was thought with the purpose to give some simple way
to mocking a dynamic component with template assignments. Don't use it thinking it is a
bidirectional way data binding. While you can get a bidirectional way behaviour accesing a
data object from a component instance, it is not the same for the component tag. Data
property declaration in component tags is only one way data binding because of components
tree architecture.

The controllerClass Attribute

	<component	controllerClass>	

Defines a custom Controller Class for the component instance

Usage:

<component	name="name_of_component"	controllerClass="ControllerClassName"></component>

The viewClass Attribute

	<component	viewClass>	

Defines a custom View Class for the component instance

Usage:

<component	name="name_of_component"	viewClass="ViewClassName"></component>

The componentClass Attribute

	<component	componentClass>	

Defines a custom Component Class for the component instance

Usage:

<component	name="name_of_component"	componentClass="ComponentClassName"></component>

The effecClass Attribute

	<component	effectClass>	

Defines a custom Effect Class for the component instance

Usage:

<component	name="name_of_component"	effectClass="EffectClassName"></component>

The template-source Attribute

	<component	template-source>	

Sets the tplsource property of the related instance of a component. Possible values are "none"
or "default".

Usage:

<component	name="name_of_component"	template-source="none"></component>

The tplextension Attribute

	<component	tplextension>	

Sets the tplextension property of the related instance of a component. Possible values are any
file extension. Default value is "html"

Usage:

<component	name="name_of_component"	tplextension="tpl.html"></component>

ComponentURI

Is a helper function to let you define the templateURI for a component in a normalised way.

Example:

var	templateURI	=	ComponentURI({
		'COMPONENTS_BASE_PATH':CONFIG.get('componentsBasePath'),
		'COMPONENT_NAME':'main',
		'TPLEXTENSION':"tpl.html",
		'TPL_SOURCE':"default"
});

console.log(templateURI);	//	this	will	show	something	like	"templates/components/main.tpl.html"	depending	on	your	CONFIG	settings

componentLoader

Loads a component instance in a low level, and appends the component template content to
the component body. In the most of cases you won't need to call componentLoader in order
to load a component. This is automatically called by QCObjects when it's needed.
componentLoader returns a promise that is resolved when the component load is done and

rejected when the component load was failed.

Usage:

	[Promise]	componentLoader(componentInstance,load_async)

Where componentInstance is a component instance created by 	New(ComponentDefinitionClass)	

Example:

componentLoader(componentInstance,load_async).then(
		(successStandardResponse)=>{
				//	component	load	successful
				var	request	=	successStandardResponse.request;
				var	component	=	successStandardResponse.component;
		},(failStandardResponse)=>{
				//	component	load	failed
				var	component	=	failStandardResponse.component;
		});

buildComponents

Rebuilds every component that is a child element of the DOM element who owns the method.
In the most of cases, you won't need to call buildComponents in order to build or rebuild every
component in the DOM. This is automatically called by QCObjects when it's needed.

Usage:

[element].buildComponents()

Example:

document.buildComponents()

Controller

A built-in QCObjects Class to define a controller

View

A built-in QCObjects View to define a view

VO

A built-in QCObjects Class to define a value object

Service

A QCObjects class type for services.

Properties

[Service].domain
Returns a string with the domain of your application. It is automatically set by QCObjects at
the load time.

[Service].basePath
Returns a string with the base path url of your application. It is automatically set by QCObjects
at the load time.

[Service].url
Is a string representing the entire url of the service. It can be absolute or relative to the
basePath when it applies. It can be also an external url.

NOTE: To load a service of an external resource you need to specify the external parameter to
true using serviceLoader.

[Service].name
Is a string representing the name of a component. The name of a service can be any
alphanumeric value that identifies the service instance. It isn't a unique ID but only a
descriptive name.

[Service].method
Is a string representing a HTTP or HTTPS method. Possible values are: "GET", "POST",
"PUT", … any other that is accepted by REST services calls.

[Service].data
Is an object representing the data of the service. When QCObjects loads a service. It receives
the response and interpretes it as a template. So once a service response is obtained, it will
get every property of data object and bind it to a template label representing the same

property inside the template content between double brakets (example: {{prop1}} in the
template content will represent data.prop1 in the service instance).

[Service].cached
Is a boolean value that tells QCObjects if the service response needs to be cached or not.
When a service is cached, the template content loaded from the service url will be loaded only
once. You have to set this value to false for every Service instance you define in order to asure
the service is loaded from the resource but not the storage cache.

Methods

[Service].set('prop',value)
Sets a value for a service property.

[Service].get('prop')
Returns the value of a service property

serviceLoader

Loads a service instance and returns a promise that is resolved when the service has a
successful response load and is rejected when it fails loading the response.

Usage:

[Promise]	serviceLoader(serviceInstance)

Example:

Class('MyTestService',Service,{
				name:'myservice',
				external:true,
				cached:false,
				method:'GET',
				headers:{'Content-Type':'application/json'},
				url:'https://api.github.com/orgs/QuickCorp/repos',
				withCredentials:false,
				new:()=>{
						//	service	instantiated
				},
				done:()=>{
						//	service	loaded
				}
});

var	service	=	serviceLoader(New(MyTestService,{
		data:{param1:1}
})).then(
		(successfulResponse)=>{
				//	This	will	show	the	service	response	as	a	plain	text
				console.log(successfulResponse.service.template);
		},
		(failedResponse)=>{

		});

JSONService

Is a built-in definition for a JSON Service Class

Properties

[JSONService].domain
Returns a string with the domain of your application. It is automatically set by QCObjects at
the load time.

[JSONService].basePath
Returns a string with the base path url of your application. It is automatically set by QCObjects
at the load time.

[JSONService].url
Is a string representing the entire url of the service. It can be absolute or relative to the
basePath when it applies. It can be also an external url.

NOTE: To load a service of an external resource you need to specify the external parameter to
true using serviceLoader.

[JSONService].name
Is a string representing the name of a component. The name of a service can be any
alphanumeric value that identifies the service instance. It isn't a unique ID but only a
descriptive name.

[JSONService].method
Is a string representing a HTTP or HTTPS method. Possible values are: "GET", "POST",
"PUT", … any other that is accepted by REST services calls.

[JSONService].data
Is an object representing the data of the service. When QCObjects loads a service. It receives
the response and interpretes it as a template. So once a service response is obtained, it will

get every property of data object and bind it to a template label representing the same
property inside the template content between double brakets (example: {{prop1}} in the
template content will represent data.prop1 in the service instance).

[JSONService].cached
Is a boolean value that tells QCObjects if the service response needs to be cached or not.
When a service is cached, the template content loaded from the service url will be loaded only
once. You have to set this value to false for every Service instance you define in order to asure
the service is loaded from the resource but not the storage cache.

Methods

[JSONService].set('prop',value)
Sets a value for a service property.

[JSONService].get('prop')
Returns the value of a service property

Example:

Class('MyTestJSONService',JSONService,{
				name:'myJSONservice',
				external:true,
				cached:false,
				method:'GET',
				withCredentials:false,
				url:'https://api.github.com/orgs/QuickCorp/repos',
				new:function	(){
						//	service	instantiated
						delete	this.headers.charset;	//	do	not	send	the	charset	header
				},
				done:function	(result){
						super('JSONService','done').call(this,result);
				}
});
var	service	=	serviceLoader(New(MyTestJSONService,{
		data:{param1:1}
})).then(
		(successfulResponse)=>{
				//	This	will	show	the	service	response	as	a	JSON	object
				console.log(successfulResponse.service.JSONresponse);
		},
		(failedResponse)=>{

		});

ConfigService

Is a built-in Class definition to load the CONFIG settings from a config.json file

Example:

//	To	set	the	config.json	file	relative	url
ConfigService.configFileName='config.json';	//	it	is	done	by	default
CONFIG.set('useConfigService',true);	//	using	config.json	for	custom	settings	config

SourceJS

SourceCSS

ArrayList

ArrayCollection

Effect

Timer

SDK

Quick Start

Step 1: Start creating a main import file and name it
like: cl.quickcorp.js. Put it into packages/js/ file
directory

"use	strict";
/*
*	QuickCorp/QCObjects	is	licensed	under	the
*	GNU	Lesser	General	Public	License	v3.0
*	[LICENSE]	(https://github.com/QuickCorp/QCObjects/blob/master/LICENSE.txt)

*
*	Permissions	of	this	copyleft	license	are	conditioned	on	making	available
*	complete	source	code	of	licensed	works	and	modifications	under	the	same
*	license	or	the	GNU	GPLv3.	Copyright	and	license	notices	must	be	preserved.
*	Contributors	provide	an	express	grant	of	patent	rights.	However,	a	larger
*	work	using	the	licensed	work	through	interfaces	provided	by	the	licensed
*	work	may	be	distributed	under	different	terms	and	without	source	code	for
*	the	larger	work.
*
*	Copyright	(C)	2015	Jean	Machuca,<correojean@gmail.com>
*
*	Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this
*	license	document,	but	changing	it	is	not	allowed.
*/

Import	('external/libs');
Import	('cl.quickcorp.model');
Import	('cl.quickcorp.components');
Import	('cl.quickcorp.controller');
Import	('cl.quickcorp.view');

Package('cl.quickcorp',[
		Class('FormValidator',Object,{

		}),
]);

Step 2: Then create some services inhereting classes
into the file js/packages/cl.quickcorp.services.js :

"use	strict";
/*
*	QuickCorp/QCObjects	is	licensed	under	the
*	GNU	Lesser	General	Public	License	v3.0
*	[LICENSE]	(https://github.com/QuickCorp/QCObjects/blob/master/LICENSE.txt)
*
*	Permissions	of	this	copyleft	license	are	conditioned	on	making	available
*	complete	source	code	of	licensed	works	and	modifications	under	the	same
*	license	or	the	GNU	GPLv3.	Copyright	and	license	notices	must	be	preserved.
*	Contributors	provide	an	express	grant	of	patent	rights.	However,	a	larger
*	work	using	the	licensed	work	through	interfaces	provided	by	the	licensed
*	work	may	be	distributed	under	different	terms	and	without	source	code	for
*	the	larger	work.
*
*	Copyright	(C)	2015	Jean	Machuca,<correojean@gmail.com>
*
*	Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this
*	license	document,	but	changing	it	is	not	allowed.
*/

Package('cl.quickcorp.service',[
				Class('FormSubmitService',JSONService,{
								name:'mySubmitService',
								external:true,
								cached:false,
								method:'POST',
								withCredentials:false,
								url:'https://api.github.com/orgs/QuickCorp/repos',
								new:function	(){
										//	service	instantiated
										delete	this.headers.charset;	//	do	not	send	the	charset	header
								},
								done:function	(result){
										super('JSONService','done').call(this,result);
								},
												fail:	function(result)	{
										//TODO	negative	case
										console.log("*****	ERROR");
								}
		})
])

Step 3: Now it's time to create the components
(cl.quickcorp.components.js)

"use	strict";
/*
*	QuickCorp/QCObjects	is	licensed	under	the
*	GNU	Lesser	General	Public	License	v3.0
*	[LICENSE]	(https://github.com/QuickCorp/QCObjects/blob/master/LICENSE.txt)
*
*	Permissions	of	this	copyleft	license	are	conditioned	on	making	available
*	complete	source	code	of	licensed	works	and	modifications	under	the	same
*	license	or	the	GNU	GPLv3.	Copyright	and	license	notices	must	be	preserved.
*	Contributors	provide	an	express	grant	of	patent	rights.	However,	a	larger
*	work	using	the	licensed	work	through	interfaces	provided	by	the	licensed
*	work	may	be	distributed	under	different	terms	and	without	source	code	for
*	the	larger	work.
*
*	Copyright	(C)	2015	Jean	Machuca,<correojean@gmail.com>
*
*	Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this
*	license	document,	but	changing	it	is	not	allowed.
*/
Package('cl.quickcorp.components',[
				Class('MyCustomComponent',Component,{
						name:'mycustomcomponent',
						cached:false,

						controller:null,
						view:null,
								templateURI:ComponentURI({
												'COMPONENTS_BASE_PATH':Component.basePath,
												'COMPONENT_NAME':'mycustomcomponent',
												'TPLEXTENSION':'tpl.html',
												'TPL_SOURCE':'default'
								})
				})
]);

Step 4: Once you have done the above components
declaration, you will now want to code your controllers
(cl.quickcorp.controller.js)

"use	strict";
/*
*	QuickCorp/QCObjects	is	licensed	under	the
*	GNU	Lesser	General	Public	License	v3.0
*	[LICENSE]	(https://github.com/QuickCorp/QCObjects/blob/master/LICENSE.txt)
*
*	Permissions	of	this	copyleft	license	are	conditioned	on	making	available
*	complete	source	code	of	licensed	works	and	modifications	under	the	same
*	license	or	the	GNU	GPLv3.	Copyright	and	license	notices	must	be	preserved.
*	Contributors	provide	an	express	grant	of	patent	rights.	However,	a	larger
*	work	using	the	licensed	work	through	interfaces	provided	by	the	licensed
*	work	may	be	distributed	under	different	terms	and	without	source	code	for
*	the	larger	work.
*
*	Copyright	(C)	2015	Jean	Machuca,<correojean@gmail.com>
*
*	Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this
*	license	document,	but	changing	it	is	not	allowed.
*/
"use	strict";
Package('cl.quickcorp.controller',[
				Class('MainController',Controller,{
								new:function	(){
												//TODO:	Implement
												logger.debug('MainController	Element	Initialized');
								}
				}),
				Class('MyAccountController',Controller,{
								component:	null,
								done:function	(){
												var	controller	=	this;

												logger.debug('MyAccountController	Element	Initialized');
												this.component.body.setAttribute('loaded',true);

								},
								new:function	(o){
												//TODO:	Implement
												this.component	=	o.component;

								}
				}),
]);

Step 5: To use into the HTML5 code you only need to
do some settings between script tags:

<script>
CONFIG.set('relativeImportPath','js/packages/');
CONFIG.set('componentsBasePath','templates/components/');
CONFIG.set('delayForReady',1);	//	delay	to	wait	before	executing	the	first	ready	event,	it	includes	imports
CONFIG.set('preserveComponentBodyTag',false);	//	don't	use	<componentBody></componentBody>	tag

Import('cl.quickcorp');	#	this	will	import	your	main	file:	cl.quickcorp.js	into	js/packages/	file	path
</script>

