
Git and Github

What is Version Management / Control?

Version control, also known as source
control, is the practice of tracking and
managing changes to software code.

Git and Github

Git

Version Control System

Manage Code History

Track Changes

Github

Largest Development Platform

Cloud Hoisting and Collaboration
Provider

Git Repository Hoisting

index.html styles.css images

Web Shop App

Working Directory

index.html styles.css images

Web Shop App

Master Branch

Commit 1

Commit 2

Commit 3

“snapshot 1”

“snapshot 2”

“snapshot 3”
styles.css script.js

How does Git Works?

Git under the hood

index.html styles.css images

Web Shop App

Working Directory

styles.css

Repository (.git – hidden folder)

Staging Area
(Index file)

Commits
(Object Folder)

commitadd

styles.css styles.css

Git = tracking changes – NOT storing the files again and again

Branches and Commits

Working Directory / Tree Working Directory / Tree

Master Branch

Commit 1 Commit 3Commit 2

Development Branch

Commit 1 Commit 3Commit 2 Commit 4

What is HEAD?

master c.1 c.2 c.3

development c.1 c.2 c.3 c.4

Head

Head

Deleting Data

Working Directory Files
(Already part of previous commits)

Unstaged Changes

Staged Changes

Latest Commits

Branches

Commands Summary - General

git --version Checks installed Git version

git init Creates empty Git repository

git status
Check working directory & staging area

status

git log Display all commits of current branch

git ls-files List tracked files

Commands Summary – Commit Creation and Access

git add filename
git add .

Add single file or all WD files to staging
area

git commit –m “message” Creates new commit

git checkout commitID Checkout commit (detached head)

Commands Summary –Branch Creation and Access

git branch branchName
git switch branchName

Creates new branch

git checkout branchName Go to branch

git checkout –b
branchName

Creates and Access new Branch

git merge otherBranch
Bring other branch changes to current

branch

Commands Summary –Deleting Data

git rm filename
git add filename

Run command after file was deleted
from current directory

git checkout .
git restore filename or .

Revert changes in tracked file

git clean -df Delete untracked file

git reset filename
git restore –staged filename

and
git checkout – filename

Removes file from staging area

git reset HEAD~1 Undo latest (~1) commit

git branch –D branchName Delete branch

WD File*

Unstaged
Changes

Staged Changes

Latest Commits

Branches

Git Assignment
• Create a new folder and initialize the repository

• Paste the "instructions.txt" file into this folder

• Add a .txt file named "file-1" containing any text of your choice to the working
directory

• Create a second .txt file named "file-2"

• Add "file-1" and "file-2" to the staging area - don't add "instructions.txt"

• Change the initial text you added to "file-1"

• Now add all working directory files to the staging area

• Create the first commit

• Create a second branch named "feature" (two commands are possible)

Git Assignment (Contd…)
• Add a third .txt file ("file-3.txt") to this branch

• Create a new commit

• Add the following text to "file-3": "I will be deleted"

• Add the updated file to the staging area

• Undo the staged change

• Add the following text: "Please add me to the master/main branch"

• Commit this latest change

• Merge the "master" (or "main") branch with "feature"

• Delete the "feature" branch

Working with Stash

git stash
Record the current state of the working

directory

git stash apply [index] Restored the stashed item

git stash list List down all stash

git stash push Push new stash in the list (with tag)

git stash pop Pop the stash item

git stash drop (index) Drops single stash item

Reference Log

git reflog Manage reflog information

Git keeps track of updates to the tip of branches using a

mechanism called reference logs,

Merge Types

Fast-Forward

Non Fast-Forward

Recursive/Criss-Cross/ORT Octopus

Ours Sub-Tree

Master and Feature – Merge (“fast-forward”)

master

feature

m1 m2

m1 m2 f1 f2

No additional commit in master
(after the feature branch was

created)

Master and Feature – Merge (“recursive”)

master

feature

m1 m2

m1 m2 f1 f2

Additional commits in both
master and feature branch

after the feature branch
was created

m3 Additional merge (commit)
is created on master branch

Branch Types

Local Branch Branch on your machine only

Remote Branch Branch on remote location

Remote Tracking Branch
Local copy of remote branch

(not to be edited)

Local Tracking Branch
Local reference to remote

tracking branch (to be edited)

Local & Remote Tracking Branches

Remote Branch

Remote Tracking Branch

Local Tracking Branch

git fetch

git merge git push

Local cache of
remote branch’s

content

Remote repository
name and branch

name can be
omitted

More on Branches

Local Branch master

Remote Tracking Branch remotes/origin/master

Remote Branch
(“origin” repository)

master

master

remotes/origin/master

master

git push origin master git pull origin master

git fetch

git merge

Local & Remote Tracking Branches – General Commands

git remote Show remote servers

git branch -a List all branches

git branch -r List all remote branches

git remote show origin Show detailed configuration

git branch -vv
List local tracking branches and their

remotes

git branch –track
branchName

origin/branchName
Creates local tracking branches

