The solution to:
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Can be computed via:
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Where W is the Lambert W Function.

In order to approximate this solution, we split the input domain z = log (%) . 5 into:
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For z < —1/e, the value of W (z) is not real.
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Respectively, the equation x - (%) = ﬁ has no real solution.

This is because x - ( £ ) Y < 1

b - e-log (%)

< 5 for every real value of x.
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For —1/e < z < +1/e, you may observe that x = ———~— = = -
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e For —1/e < z < 0, which implies that a < b, we compute x =

n—1

e For( < z < +1/e, which implies that a > b, we compute x =
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As you can see, when a = b, both formulas can be reduced to x = 5 .

For +1/e < z < 3 + 1/e, we use a lookup table which maps 128 uniformly distributed values of z.

Then, we calculate W (z') as the weighted-average of W (zo) and W (z;), where zg < z’ < z;.

For z > 3 + 1/e, we rely on the fact that W (z) ~ log(z) — log(log(z)) + log(log(z))/log(z).

Of course, z is ultimately restricted by the maximum input supported in our log implementation.



