
Safe
Contracts 1.4.0

by Ackee Blockchain

28.3.2023

https://ackeeblockchain.com

Contents
1. Document Revisions. 4

2. Overview . 5

2.1. Ackee Blockchain . 5

2.2. Audit Methodology . 5

2.3. Finding classification. 6

2.4. Review team. 8

2.5. Disclaimer . 8

3. Executive Summary. 9

Revision 1.0. 9

Revision 1.1 . 10

4. Summary of Findings. 12

5. Report revision 1.0 . 14

5.1. System Overview . 14

5.2. Trust model. 16

M1: Broken guard can cause DoS . 18

M2: Lack of contract check . 20

L1: Error-prone proxy constructor . 23

W1: Usage of delegatecalls . 25

W2: Fallback handler can be set to address(this) . 27

W3: Removed owner's stored hash . 29

W4: Singleton address at slot 0 . 30

W5: Call to disableModule can be frontrun . 32

W6: Threshold can be set too high . 33

I1: Code and comment inconsistency. 34

I2: Require should be assert . 36

6. Report revision 1.1 . 38

2 of 46

https://ackeeblockchain.com

Appendix A: How to cite . 39

Appendix B: Woke outputs . 40

B.1. Tests . 40

3 of 46

https://ackeeblockchain.com

1. Document Revisions
0.1 Draft report March 14, 2023

1.0 Final report March 16, 2023

1.1 Fix review March 28, 2023

4 of 46

https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specializing in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run free

certification courses School of Solana, Summer School of Solidity and teach

at the Czech Technical University in Prague. Ackee Blockchain is backed by

the largest VC fund focused on blockchain and DeFi in Europe, RockawayX.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Woke is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

5 of 46

https://github.com/ackee-blockchain
https://ackeeblockchain.com/school-of-solana
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rockawayx.com/
https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

2.3. Finding classification
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity

Likelihood

High Medium Low -

Impact

High Critical High Medium -

Medium High Medium Medium -

Low Medium Medium Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

6 of 46

https://ackeeblockchain.com

Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration (such as deployment scripts, compiler configuration, use of

multi-signature wallets for owners, etc.), but could be a security

vulnerability if these were to change slightly. If we haven’t found a way to

exploit the issue given the time constraints, it might be marked as a

"Warning" or higher, based on our best estimate of whether it is currently

exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

7 of 46

https://ackeeblockchain.com

2.4. Review team

Member’s Name Position

Lukáš Böhm Lead Auditor

Miroslav Škrabal Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

8 of 46

https://ackeeblockchain.com

3. Executive Summary
Safe is a decentralized custody protocol allowing multi-signature (multi-sig)

wallets to be used as a single account. Businesses and individuals can use

multi-sig wallets for safe collective management, perform sensitive

transactions, and achieve redundancy. The protocol is widely used across the

Ethereum and EVM ecosystems.

Revision 1.0
Safe engaged Ackee Blockchain to perform a security review of the Safe

contracts version 1.4.0 with a total time donation of 10 engineering days in a

period between February 27 and March 10, 2023 and the lead auditor was

Lukáš Böhm.

The audit has been performed on the commit eb93dbb, and the scope was the

following contracts with all imports (recursively):

• SafeL2.sol

• proxies/SafeProxyFactory.sol

• handler/CompatibilityFallbackHandler.sol

• libraries/MultiSendCallOnly.sol

• libraries/SignMessageLib.sol

We began our review using static analysis tools Woke. We then took a deep

dive into the logic of the contracts. For testing and fuzzing, we have involved

Woke testing framework where we simulated deployment of the Safe and

focused on the correctness of signature and owner handling. The appendix

includes parts of the testing source core.

During the review, we paid particular attention to:

9 of 46

https://github.com/Ackee-Blockchain/woke
https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

• signature validation,

• malicious owner actions,

• modules handling,

• owners handling,

• guard handling,

• fallback handler logic,

• access controls,

• delegate call risks,

• data validation.

Our review resulted in 11 findings, ranging from Info to Medium severity. The

quality of the code is exceptional. NatSpec in-code documentation is part of

every contract and function. General documentation still needs to be

created, but Safe team provided a few documents describing the most

crucial part - signatures.

Ackee Blockchain recommends Safe:

• change guard management logic,

• mitigate impacts of malicious deployer,

• address all other reported issues.

See Revision 1.0 for the system overview of the codebase.

Revision 1.1
The review was done on March 28 on the given commit cb4b2b1.

The status of all reported issues has been updated and can be seen in the

findings table. Issues include client responses, comments, and pull requests

10 of 46

https://ackeeblockchain.com

with specific responses, if any.

See Revision 1.1 for the review of the updated codebase and additional

information we consider essential for the current scope.

11 of 46

https://ackeeblockchain.com

4. Summary of Findings
The following table summarizes the findings we identified during our review.

Unless overridden for purposes of readability, each finding contains:

• a Description,

• an Exploit scenario,

• a Recommendation and if applicable

• a Solution.

There might often be multiple ways to solve or alleviate the issue, with

varying requirements regarding the necessary changes to the codebase. In

that case, we will try to enumerate them all, clarifying which solves the

underlying issue better (albeit possibly only with architectural changes) than

others.

Severity Reported Status

M1: Broken guard can cause

DoS

Medium 1.0 Acknowledged

M2: Lack of contract check Medium 1.0 Acknowledged

L1: Error-prone proxy

constructor

Low 1.0 Acknowledged

W1: Usage of delegatecalls Warning 1.0 Acknowledged

W2: Fallback handler can be

set to address(this)

Warning 1.0 Fixed

W3: Removed owner's stored

hash

Warning 1.0 Acknowledged

W4: Singleton address at

slot 0

Warning 1.0 Acknowledged

12 of 46

https://ackeeblockchain.com

Severity Reported Status

W5: Call to disableModule

can be frontrun

Warning 1.0 Acknowledged

W6: Threshold can be set

too high

Warning 1.0 Acknowledged

I1: Code and comment

inconsistency

Info 1.0 Partially fixed

I2: Require should be assert Info 1.0 Acknowledged

Table 2. Table of Findings

13 of 46

https://ackeeblockchain.com

5. Report revision 1.0

5.1. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

Contracts

Contracts we find important for better understanding are described in the

following section.

SafeL2

The main logic of the protocol is in the Safe.sol contract. It allows execution

of the Safe transaction to a specific address, with a data payload, value, and

other parameters. All of these parameters must be signed by the owners of

the Safe. There are four different signatures:

• Contract signature defined by EIP-1271

• EOA signature

• EIP-712 signature

• Pre-Validated signature

Every signature is 65 bytes long. They are concatenated, sorted by address

value in ascending order, and passed as an input parameter into the

execution function. In the case of contract signature (EIP-1271), additional

data are added to the end of concatenated signatures bytes. The threshold

defines the number of signatures required to execute a Safe transaction.

Owners of the Safe are manageable by OwnerManager contract. Transactions

can also be executed by modules, and arbitrary transaction guard can be

14 of 46

https://ackeeblockchain.com

added. SafeL2 extends the functionality of Safe by emitting events with

additional information.

The contract inherits the logic of ./base/xManager.sol contracts and

./common/x.sol contracts.

OwnerManager

The contract manages the owners of Safe. It allows adding, removing, and

swapping owners. It also allows changing the threshold of the Safe. Functions

of the contract are protected by authorized modifier. The modifier allows only

the Safe contract to call the functions, which means a Safe transaction has

to be performed on the Safe contract to call itself.

GuardManager

The contract implements the logic for hooks that are called before and after

a Safe transaction is executed. Only one Guard can be set at the time. Setting

the guard is protected by authorized modifier.

ModuleManager

The contract enables and disables modules. These two functionalities are

protected by authorized modifier. If a module is set, it can execute a Safe

transaction without needing signatures to be passed as a parameter into the

function.

SafeProxyFactory

The contract is used for deploying the new proxy contract.

• Deployer can choose between 3 different deployment options:

• Deploy Proxy with s nonce

• Deploy chain-specific Proxy with a nonce

15 of 46

https://ackeeblockchain.com

• Deploy Proxy with a callback and nonce

The new Proxy is created using the CREATE2 function, where the address can

be precalculated with salt. Singleton Safe contract code is used as a logic

contract for the new Proxy.

CompatibilityFallbackHandler

The contract provides compatibility between Safe version < 1.3.0 and 1.3.0 +.

It implements the EIP-1271 interface and other necessary functionalities for

the new Safe version.

Actors

This part describes the system’s actors, roles, and permissions.

Deployer

The deployer of the new Safe has the privilege to set up owners, threshold,

and fallback handler.

Owners

Owners of the Safe can sign transactions that are then executable by

anyone. The executor of the Safe transaction has to pass all necessary

signatures (defined by threshold) as an input argument to the Safe

transaction.

Modules

Modules are contracts that can execute Safe transactions without the need

for signatures. They can be enabled and disabled by the Safe transaction.

5.2. Trust model
Modules can execute Safe transactions without signature. It is crucial to

16 of 46

https://ackeeblockchain.com

carefully select addresses with such trust and privilege over the system.

17 of 46

https://ackeeblockchain.com

M1: Broken guard can cause DoS

Medium severity issue

Impact: High Likelihood: Low

Target: Safe.sol Type: Denial of service

Description

Safe can set up a guard contract that executes functions before

address guard = getGuard();
{
 if (guard != address(0)) {
 Guard(guard).checkTransaction(
 // Transaction info
 ...
);
 }
}

and after transactions.

{
 if (guard != address(0)) {
 Guard(guard).checkAfterExecution(txHash, success);
 }
}

If one of these two functions is broken or just reverts, it can cause DoS for

the whole Safe.

Vulnerability scenario

The guard setup function is protected by authorized modifier, thus can be

called by Safe transaction only. However, if the guard function reverts for

18 of 46

https://ackeeblockchain.com

any reason, there is no way to execute a Safe transaction and change the

guard address.

Recommendation

Guard can work as an additional layer of security for the Safe. Nevertheless, if

the guard functions contain an issue that causes reverting transactions, Safe

should be able to execute transactions without it or have the ability to

change the guard address.

Fix 1.1

Client’s response:

• "Modules can be used for recovery"

• Add documentation for guards and warn about usage

Pull request #535 with added documentation.

Go back to Findings Summary

19 of 46

https://github.com/safe-global/safe-contracts/pull/535
https://ackeeblockchain.com

M2: Lack of contract check

Medium severity issue

Impact: Medium Likelihood: Low

Target: SecuredTokenTransfer.sol,

Execute.sol

Type: Data validation

Description

For transferring tokens from the Safe contract to the payment token receiver

following function used:

function transferToken(address token, address receiver, uint256 amount)
internal returns (bool transferred) {
 // 0xa9059cbb - keccack("transfer(address,uint256)")
 bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver,
amount);
 // solhint-disable-next-line no-inline-assembly
 assembly {
 // We write the return value to scratch space.
 // See
https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#lay
out-in-memory
 let success := call(sub(gas(), 10000), token, 0, add(data, 0x20),
mload(data), 0, 0x20)
 switch returndatasize()
 case 0 {
 transferred := success
 }
 case 0x20 {
 transferred := iszero(or(iszero(success), iszero(mload(0))))
 }
 default {
 transferred := 0
 }
 }
}

20 of 46

https://ackeeblockchain.com

It uses a low-level call to a predefined function selector

"transfer(address,uint256)" on the token’s address. However, if the address

is not a contract, a low-level call returns 1, because no revert happens inside

the call.

The second place where contract check is suitable but not performed is the

execute function in the Executor contract.

 if (operation == Enum.Operation.DelegateCall) {
 // solhint-disable-next-line no-inline-assembly
 assembly {
 success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0,
0)
 }
} else {
 // solhint-disable-next-line no-inline-assembly
 assembly {
 success := call(txGas, to, value, add(data, 0x20), mload(data), 0,
0)
 }
}

The function is called from the Safe execution function, where the check of

whether the address to is a contract is not performed either. Especially for a

delegate call, it is important to check whether the address is a contract.

Vulnerability scenario

Suppose the wrong address is provided as a token or destination address. In

that case, the Safe contract will assume that the token transfer or call was

successful because the variable success is equal to 1.

Recommendation

Perform the check whether the address is a contract before calling the low-

level call.

21 of 46

https://ackeeblockchain.com

Additionally, differ the logic for EOA and contract calls.

Fix 1.1

Client’s response:

• "Checks for the execution should be done on interface

level. Contracts should provide full flexibility. No user

funds at risk"

• Add documentation that outlines that it is the responsibility of the

interface/relayer to check this.

Pull request #536 with added in-code documentation.

Go back to Findings Summary

22 of 46

https://github.com/safe-global/safe-contracts/pull/536
https://ackeeblockchain.com

L1: Error-prone proxy constructor

Low severity issue

Impact: Low Likelihood: Low

Target: SafeProxy.sol Type: Data validation

Description

The constructor of the SafeProxy contract does not use robust verification

for singleton address. Only the check for zero address is performed.

Vulnerability scenario

Passing the wrong singleton address to the constructor of the SafeProxy

contract will lead to the unintended behavior of the contract.

Recommendation

More robust verification can be performed by checking the singletons’s

identifier against the constant. For example:

contract SafeProxy{

 constructor(address _singleton) {
 require(Safe(payable(_singleton)).identifier() == keccak256("safe-
1.4.0"), "Invalid singleton address provided");
 singleton = _singleton;

 }
 ...
}

contract Safe{
 function identifier() public pure returns (bytes32) {
 return keccak256("safe-1.4.0");
 ...

23 of 46

https://ackeeblockchain.com

}

Fix 1.1

Client’s response:

• "This is intended behavior"

• "Proposed solution is not stable enough as it is easily

possible to “fake” the check. Alternatively we could fix it

to a specific address, but this would defeat the purpose of

a generalized proxy."

Go back to Findings Summary

24 of 46

https://ackeeblockchain.com

W1: Usage of delegatecalls

Impact: Warning Likelihood: N/A

Target: Safe.sol Type: Data validation

Description

Delegatecall in setup

The Safe contract uses the setup function to initialize its state. The setup

function can be viewed as a point of centralization as it is called before the

owners are set. What is more, the setup function can also result in a

delegatecall. That increases the possibility for the deployer to set up the

contract dishonestly.

To trust the setup, the owners must verify the code and the inputs to the

setup function.

The setup process should be as transparent as possible to allow all the

parties to verify its output. If a delegate call is used, the probability that

everyone will verify the setup is lower.

Delegatecall in execute

The delegatecall can also be triggered from executeTransaction or

executeTransactionFromModule. Such calls are inherently dangerous as they

can transform the contract’s storage into an inconsistent state. The target

contract might not be audited and might break some important invariants

(like the owner list validity, nonce linearly decreases, the threshold is at most

len(owners) etc.)). If the nonce decreases, transactions might be replayed. If

the threshold exceeds the number of owners, the contract might be locked

forever, etc.

25 of 46

https://ackeeblockchain.com

Recommendation

Include the bare minimum of logic in the setup function. If a more delicate

setup is needed, consider moving it to the execute portion of the contract.

The delegatecall may be eventually needed, but splitting the setup into two

parts makes the verification process more transparent.

More generally, consider the usage of delegatecalls. The semantics can often

be easily replicated with a simple call, which is easier to verify and audit.

Go back to Findings Summary

26 of 46

https://ackeeblockchain.com

W2: Fallback handler can be set to address(this)

Impact: Warning Likelihood: N/A

Target: FallbackManager.sol Type: Data validation

Description

The fallback handler in the contract FallbackManager can be set to

address(this) by Safe. It could bypass the Safe’s authorized modifier in

exceptional cases.

The authorized modifier enforces a self-call. The fallback handler contains the

following code:

// The msg.sender address is shifted to the left by 12 bytes to remove the
padding
// Then the address without padding is stored right after the calldata
mstore(calldatasize(), shl(96, caller()))
// Add 20 bytes for the address appended add the end
let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)

If the msg.sender is a specially crafted address, the first 4 bytes of the

address may correspond to some function selector. It could be called if such

a function has the authorized modifier.

So even though the first call will fall into the fallback function, the second

one might not.

In the current implementation, this should not be possible because even if

the selector matched, the call would revert on abi.decoding of the arguments

(because the caller’s address does not constitute proper calldata for such a

function call).

27 of 46

https://ackeeblockchain.com

Recommendation

Ensure the fallback handler cannot be set to address(this). This will not

reduce the functionality of the fallback handler and will ensure that the

handler cannot be set to address(this) by accident.

Fix 1.1

Client’s response:

• Add require(handler != this)

• Add test

• Add in-code documentation

Pull request #534 with a complete fix.

Go back to Findings Summary

28 of 46

https://github.com/safe-global/safe-contracts/pull/534
https://ackeeblockchain.com

W3: Removed owner's stored hash

Impact: Warning Likelihood: N/A

Target: Safe.sol Type: Redundant

memory

Description

The Safe provides to approve specific messages by owners.

function approveHash(bytes32 hashToApprove) external {
 require(owners[msg.sender] != address(0), "GS030");
 approvedHashes[msg.sender][hashToApprove] = 1;
 emit ApproveHash(hashToApprove, msg.sender);
}

However, when one of the owners is removed, the hash of the message

he/she approved before remains stored. This fact violates the condition that

only owners can make message approvals.

Recommendation

Even though the pre-approved message hashes are not exploitable, there is

no reason to store hashes of the removed owner. Therefore, the hash of the

removed owner should be removed from the storage.

Fix 1.1

Client’s response:

• Add documentation that hashes stay valid

Pull request #538 with added in-code documentation.

Go back to Findings Summary

29 of 46

https://github.com/safe-global/safe-contracts/pull/538
https://ackeeblockchain.com

W4: Singleton address at slot 0

Impact: Warning Likelihood: N/A

Target: SafeProxy.sol Type: Proxy pattern

Description

The SafeProxy contract uses the proxy pattern to delegate calls to the logic

contract. The address of the logic contract is stored at slot 0.

contract SafeProxy {
 // Singleton always needs to be first declared variable, to ensure that
it is at the same location in the contracts to which calls are delegated.
 // To reduce deployment costs this variable is internal and needs to be
retrieved via `getStorageAt`
 address internal singleton;

This is prone to error as it requires that the singleton variable is always the

first declared variable in the contract. If not, a slot collision can happen, and

the address can get overwritten.

Recommendation

If there are no compatibility issues (like upgrading between different safe

versions), the unstructured storage pattern should be performed, as it is

much less prone to errors. In the long term, the unstructured storage pattern

should be preferred for developing new contracts.

The OpenZeppelin contracts follow this pattern:

bytes32 private constant implementationPosition = bytes32(uint256(
 keccak256('eip1967.proxy.implementation')) - 1
));

30 of 46

https://ackeeblockchain.com

More information can be found in the [OpenZeppelin

documentation](https://docs.openzeppelin.com/upgrades-plugins/1.x/

proxies#unstructured-storage-proxies).

Go back to Findings Summary

31 of 46

https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies#unstructured-storage-proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies#unstructured-storage-proxies
https://ackeeblockchain.com

W5: Call to disableModule can be frontrun

Impact: Warning Likelihood: N/A

Target: Safe.sol, ModuleManager.sol Type: Frontrunning

Description

Modules can be added to the Safe and removed. Removing a module is done

by calling the disableModule function. However, the disabled transaction can

be front-run by a malicious module. Because the module can perform state

changes in the Safe it also can entirely mitigate the effect of the

disableModule call.

Recommendation

This issue cannot be mitigated as it is inherent to the Safe design. The issue

is included to demonstrate further the potential dangers of using modules.

Fix 1.1

Client’s response:

• "As mentioned in the report modules are “omnipotent” and

need to be considered carefully, therefore this should be

considered when developing a protocol around the Safe core

contracts that provides security."

• Improve Module documentation

Pull request #539 with added documentation.

Go back to Findings Summary

32 of 46

https://github.com/safe-global/safe-contracts/pull/539
https://ackeeblockchain.com

W6: Threshold can be set too high

Impact: Warning Likelihood: N/A

Target: OwnerManager.sol Type: Data validation

Description

The 5.1.1.2 contract allows adding new owners and changing the threshold.

The threshold can be set to arbitrarily high values if it is lower than the

number of owners.

However, there is an implicit limit for the threshold imposed by the block gas

limit. If the threshold is set too high, supplying enough signatures will not be

possible because of the gas limit.

We ran some back-of-the-envelope calculations and found that the threshold

would have to reach unreasonable values before the gas limit would become a

problem, and thus this should be fine for any multi-sig.

Recommendation

Consider performing some more thorough calculations and setting a limit for

the threshold.

Fix 1.1

Client’s response:

• "This is highly dependent on the chain and the limits on

the chain. Even on mainnet the limit is quite high

therefore we don’t see a need for an immediate action

(beyond sharing it as part of the audit)"

Go back to Findings Summary

33 of 46

https://ackeeblockchain.com

I1: Code and comment inconsistency

Impact: Info Likelihood: N/A

Target: Safe.sol, ModuleManager.sol Type: Code quality

Description

While declaring new variables in Safe contract, at the line #150 a zero value is

assigned,

uint256 moduleCount = 0;

at the line #276 it is not.

uint8 v;

Even though the compiler assigns a zero value to the variables, it is a good

practice not to mix the two approaches.

In the contract ModuleManager the code comment at line #160 refers to the

variable currentModule, which does not exist in the code.

the `currentModule` will always be either a module address

Recommendation

Stick with one approach for an assignment and use it consistently across the

codebase.

Update the in-code comment to refer to the correct variable.

34 of 46

https://ackeeblockchain.com

Fix 1.1

Client’s response:

• Variable declaration: "No action because in our tests leaving a

variable non-initialized resulted in less gas consumption"

• The comment in ModuleManager was adjusted

Pull request #530 with adjusted in-code documentation.

Go back to Findings Summary

35 of 46

https://github.com/safe-global/safe-contracts/pull/530
https://ackeeblockchain.com

I2: Require should be assert

Impact: Info Likelihood: N/A

Target: OwnerManager.sol,

ModuleManager.sol

Type: Code quality

Description

The require statement is used instead of better suited assert at several

places in the code. The require statement checks conditions that are not

supposed to happen during regular operation. However, the assert statement

checks conditions that should always be true.

The following require statements should be asserts :

• OwnerManager.sol

◦ setupOwners #31

require(threshold == 0, "GS200");

• ModuleManager.sol

◦ setupModules #32

require(modules[SENTINEL_MODULES] == address(0), "GS100");

These invariant conditions should always be true and are not supposed to

happen during regular operations.

It is essential to remember that solidity version < 0.8.0 (allowed version for

Safe contracts) failing asserts are returning invalid opcode, which consumes

all remaining gas. On the other hand, require is returning unused gas.

36 of 46

https://ackeeblockchain.com

Recommendation

The asserts provide more information for reviewers and auditors because

they convey that the given condition should always be true. Using requires

may be confusing because it implies that the condition could sometimes

revert.

Fix 1.1

Client’s response:

• "The current version of the Safe uses Solidity 0.7.6 where

require does not use up all gas. To prevent unexpected

behavior this will not be changed in this version"

Go back to Findings Summary

37 of 46

https://ackeeblockchain.com

6. Report revision 1.1
No significant changes were performed in the logic of contracts. Events were

modified in several places in the codebase (PR #542). They are now indexed

for better off-chain access. All other changes address reported issues.

38 of 46

https://github.com/safe-global/safe-contracts/pull/542
https://ackeeblockchain.com

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, Safe: Contracts 1.4.0, 28.3.2023.

39 of 46

https://github.com/ackee-blockchain
https://ackeeblockchain.com

Appendix B: Woke outputs

B.1. Tests
The following code shows the functions implemented in Woke testing

framework for building every type of signature payload that is used in the

Safe contract and also create_mutlisig function for creating the final

signature byte payload.

Static part v == 0
def get_eip_sig(address, offset):
 # r - contract address
 contract = 12 * b"\x00" + bytes.fromhex(str(address)[2:])
 # s - pointing to dynamic data start
 data_pointer = int.to_bytes(offset, 32, "big")
 # v - type
 sig_type = b"\x00"
 static_part = contract + data_pointer + sig_type
 return static_part

Dynamic part v == 0
def get_eip_dynamic_data(data):
 # 32 bytes - len of following data
 data_len = int.to_bytes(len(data), 32, "big")
 # len + data
 dynamic_part = data_len + data
 return dynamic_part

v > 30 branch - formated EIP-712 msg
def get_formated_sig(address, hash):
 sig = address.sign(hash)
 r = sig[:32]
 s = sig[32:64]
 v = sig[64:]
 signature = r + s + int.to_bytes(int.from_bytes(v, "big") + 4, 1,
"big")
 return signature

default sig

40 of 46

https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

def get_classic_sig(address, hash):
 signature = address.sign_hash(hash)
 return signature

v == 1 branch - owner in r, the rest does not matter
def get_r_owner_payload(address):
 signature = 12 * b"\x00" + bytes.fromhex(str(address)[2:]) + 32 *
b"\x00" + b"\x01"
 return signature

Create final signature with ascending order of addresses (magic)
def create_mutlisig(v_0, v_1, v_30, default, hash, data):
 # Create tuples (address, type_of_signature)
 joined =[]
 if v_0:
 v_0_tup = create_tuple(v_0,'0')
 joined += v_0_tup
 if v_1:
 v_1_tup = create_tuple(v_1,'1')
 joined += v_1_tup
 if v_30:
 v_30_tup = create_tuple(v_30,'30')
 joined += v_30_tup
 if default:
 default_tup = create_tuple(default,'def')
 joined += default_tup
 # sort it
 joined.sort(key=lambda tup: tup[1])
 # final mutlisig bytes
 multisig = b""
 # data bytes of EIP sig - connect at the end of static signatures
 eip_data = b""
 # if more EIP sigs (v==0) - we need to point to the end of data in
memory
 multisig_len = len(joined) * 65
 for tup in joined:
 if tup[0] == '0':
 multisig += get_eip_sig(tup[1], multisig_len)
 eip_data += get_eip_dynamic_data(data)
 multisig_len += len(eip_data)
 elif tup[0] == '1':
 multisig += get_r_owner_payload(tup[1])

41 of 46

https://ackeeblockchain.com

 elif tup[0] == '30':
 multisig += get_formated_sig(tup[1], hash)
 else:
 multisig += get_classic_sig(tup[1], hash)

 multisig += eip_data
 return multisig

def create_tuple(v, id):
 tup = []
 for a in v:
 tup.append((id,a))
 return tup

42 of 46

https://ackeeblockchain.com

Initial deployment code of the Safe by SafeProxyFactory.

Complete safe deployment
def setup_safe(owners, treshold, handler, token, receiver):
 deployer = owners[0]
 # Singleton original Safe contract
 singleton = Safe.deploy(from_=deployer)
 factory = SafeProxyFactory.deploy(from_=deployer)
 # Proxy take singleton code and call create2
 proxy = factory.createProxyWithNonce(
 singleton,
 b"",
 42,
 from_=deployer
)
 # Calling our Safe contract methods trough proxy address
 safe = Safe(proxy.address)
 safe.setup(
 owners,
 treshold,
 Address(0), # no modules
 b"", # no data
 handler, # fallback handler (address)
 token, # payment token (address)
 0, # payment
 receiver, # payment receiver (address)
 from_=deployer,
)
 return safe

43 of 46

https://ackeeblockchain.com

Example of guard setup Safe transaction with provided signatures:

 # Default sig
 a = Account.from_alias("test")
 a.balance = 10*(10**18)
 # V > 30 sig
 b = default_chain.accounts[1]
 c = default_chain.accounts[2]
 d = default_chain.accounts[3]
 e = default_chain.accounts[4]
 # V == 0 sig
 contract_1 = SignatureValidator.deploy(from_=c)
 contract_2 = SignatureValidator.deploy(from_=e)
 # 0 < treshold <= len(owners)
 owners = [a,b,contract_1,d,contract_2]
 treshold = 5

 ...

 guard = DebugTransactionGuard.deploy(from_=c)
 tx_abi = Abi.encode_call(Safe.setGuard, [guard.address])
 ###### SETTING GUARD ######
 to = safe.address
 value = 0
 data = tx_abi
 operation = Enum.Operation.Call
 safe_tx_gas = 100000
 base_gas = 100000
 gas_price = 0
 nonce = 0

 tx_data = safe.encodeTransactionData(
 to,
 value,
 data,
 operation,
 safe_tx_gas,
 base_gas,
 gas_price,
 payment_token,
 payment_receiver,

44 of 46

https://ackeeblockchain.com

 nonce,
 from_=d
)

 tx_hash = keccak256(tx_data)
 contract.sign(tx_hash, b"\x00",from_=c)
 contract_2.sign(tx_hash, b"\x00",from_=e)

 # Packed byte signatures in 'multisig' var
 # v_0 - array of addresses where contract is a signer
 # v_1 - array of addr. with approved hashes
 # v_30 - array of addr. for eth signed messages
 # def - array of addr. for classic signatures
 multisig = create_mutlisig(
 v_0 = [Account(contract_1.address),
 Account(contract_2.address)],
 v_1 = [d],
 v_30 = [b],
 default = [a],
 hash = tx_hash,
 data = tx_data
)

 tx = safe.execTransaction(
 to,
 value,
 data,
 operation,
 safe_tx_gas,
 base_gas,
 gas_price,
 payment_token,
 payment_receiver,
 multisig,
 from_=d,
 return_tx=True
)

45 of 46

https://ackeeblockchain.com

 Thank You
 Ackee Blockchain a.s.

 Prague, Czech Republic

 hello@ackeeblockchain.com

 h�ps://twi�er.com/AckeeBlockchain

	Safe: Contracts 1.4.0
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Finding classification
	2.4. Review team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1

	4. Summary of Findings
	5. Report revision 1.0
	5.1. System Overview
	5.2. Trust model
	M1: Broken guard can cause DoS
	M2: Lack of contract check
	L1: Error-prone proxy constructor
	W1: Usage of delegatecalls
	W2: Fallback handler can be set to address(this)
	W3: Removed owner's stored hash
	W4: Singleton address at slot 0
	W5: Call to disableModule can be frontrun
	W6: Threshold can be set too high
	I1: Code and comment inconsistency
	I2: Require should be assert

	6. Report revision 1.1
	Appendix A: How to cite
	Appendix B: Woke outputs
	B.1. Tests

