

Portal Docs

for Azure Maps

last revised 7/9/2018

refer to SharePoint

https://microsoft.sharepoint.com/teams/Azure_IoT/Shared%20Documents/Forms/AllItems.aspx?viewpath=%2Fteams%2FAzure%5FIoT%2FShared%20Documents%2FForms%2FAllItems%2Easpx&id=%2Fteams%2FAzure%5FIoT%2FShared%20Documents%2FLocation%20Based%20Services%2FEngineering%2FDesign%20Docs%2FTeam%20Purple

OVERVIEW

Ibiza, known as Azure Portal, is divided into two sections.

Portal Extension

Manage resources (or Azure Maps accounts) experience

Extension is like a service in Azure Portal

Portal Marketplace / Gallery

“Create a resource” experience

Marketplace is like an app store for Azure Portal

Azure Maps exposes account management APIs and a set of statistics for users through Portal.

For any Azure Maps account management APIs, the user interacts with Azure Resource

Manager, commonly known as ARM or Sparta. ARM is a service that provisions Azure resources,

and is responsible for caching tracked resources, namely Azure Maps accounts. Each service is

identified by a Resource Provider namespace in ARM and are defined in the Resource Provider

Manifest. The RP Manifest outlines the endpoints for each region and environment to where

the call should be passed on to.

Our ARM RP namespace is Microsoft.Maps, and the RP Manifest is available in both Test and

Public ARM environments. The manifest is available to view/edit through (prod) Jarvis Actions.

Azure Resource Manager > Resource Provider Management > Get / Put Manifest

Public –management.azure.com

Test – api-dogfood.resources.windows-int.net

Traffic ManagerAzure Resource Manager

(ARM)

EastUS

WestUS2

WestEurope

Portal Marketplace
API Management Services

Azure Portal Portal Extension Azure Maps

Account Management

Metrics / Charts Azure Monitoring

(Shoebox)

Geneva Metrics

(Hot Path)

http://sharepoint/sites/AzureUX/Sparta/SpartaWiki/Sparta%20Wiki.aspx
https://jarvis-west.dc.ad.msft.net/#/actions
https://jarvis-west.dc.ad.msft.net/?page=actions&acisEndpoint=Public&selectedNodeType=3&extension=Azure%20Resource%20Manager&group=Resource%20Provider%20Management&operationId=GetResourceProviderManifest&operationName=Get%20Manifest&inputMode=single¶ms=%7b%22resourceprovidernamespace%22:%22Microsoft.Maps%22,%22includemetadata%22:null,%22locationname%22:%22CentralUS%22%7d&actionEndpoint=Azure%20Resource%20Manager&genevatraceguid=ca9b7f15-a5d9-479c-8118-284042abddb2
https://jarvis-west.dc.ad.msft.net/F4A0FB54?genevatraceguid=ca9b7f15-a5d9-479c-8118-284042abddb2

We utilize Azure Traffic Manager as our endpoints for manifest to route requests into multiple

regions. We have four Traffic Managers, each representing an environment.

CI - c-rp-trafficmgr.trafficmanager.net

Test - t-rp-trafficmgr.trafficmanager.net

Staging - s-rp-trafficmgr.trafficmanager.net

Production - p-rp-trafficmgr.trafficmanager.net

Note: Generally, only Test ARM RP manifest should be allowed to have endpoints changed.

When the endpoint is updated for accounts, it is advisable to invalidate the ARM cache.

This can be done via Azure Resource Manager > Resource Group Management > Synchronize subscription resources

When the request is routed through our endpoint, it is passed into our ResourceProvider >

ResourceProviderWebAPI > Controllers code and proper response is constructed. For account

specific operations, Azure Storage, Azure API Management, etc. are also involved from the

Controllers.

For visualizing users’ data, Portal uses MonitorChart to render charts and Azure Monitoring to

bring data into the charts.

MonitorCharts - Azure Portal SDK – API reference

Azure Monitoring – https://aka.ms/shoebox

An example usage of MonitorCharts can be found here.

Azure Monitoring takes data from MDM Hot Path and directly presents them in Portal through

MonitorCharts. Data exposures are controlled by our GET Operations under

metricSpecifications, where the GET Operations defines our MDM accounts, namespaces,

metrics, and its dimensions.

Metrics are logged with MDM library (example), and every new Portal metric must include a

resource ID dimension.

https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FResourceProvider%2FResourceProviderWebAPI%2FControllers&version=GBmaster
https://df.onecloud.azure-test.net/#blade/SamplesExtension/SDKMenuBlade/apiReference
https://aka.ms/shoebox
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FLocSvcExtension%2FLocSvcExtension%2FClient%2FMyResource%2FMyResourceBladeOverviewBlade.ts&version=GBmaster&line=42&lineStyle=plain&lineEnd=44&lineStartColumn=1&lineEndColumn=56
https://jarvis-west.dc.ad.msft.net/?page=settings&mode=mdm&tab=metrics&account=MicrosoftLocationBasedServicesShoebox&namespace=ServiceOperations
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FResourceProvider%2FResourceProviderWebAPI%2FControllers%2FOperationsController.cs&version=GBmaster&line=118&lineStyle=plain&lineEnd=192&lineStartColumn=1&lineEndColumn=8
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices/pullrequest/922244?_a=files&path=%2Fsrc%2FALSProxy%2FALS%2FInstrumentation%2FProxyOperation.cs

PORTAL EXTENSION | Documentation

Dev Setup

1. Clone Azure-IoT-LocationBasedServices repository

2. Open Visual Studio 2017 as administrator

3. Open Portal folder and set LocSvcExtension as StartUp Project

4. Set as Debug and x64

Code Structure

LocSvcExtension

> Client

 > ClientResources.resx

 Where all localizable strings are stored.

 ClientResources.*.resx files are generated from Simpleloc (see Localization section).
 Note: You want to keep all strings, that you wish to be translated, here.

 > MyResource

 Where blades are defined for Portal.

 Blades contain custom UI and logic for extensions.
 Note: You can find corresponding blade filename by pressing ctrl+alt+d in Portal.

 > Styles

 > extensions.css (linked via extension.pdl)

 Where custom CSS styles are defined for extension blades.
 Note: All custom CSS styles must begin with .ext-*

 > Templates

 > MyResourceBladeOverviewBlade.html

 Where html is defined for MyResourceBladeOverviewBlade.ts
 Note: Other blades define html within blades ts files as they are not complex.

https://github.com/Azure/portaldocs/blob/master/portal-sdk/generated/index-portalfx-extension-development.md
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices
https://github.com/Azure/portaldocs/blob/master/portal-sdk/generated/portalfx-blade-viewmodel.md

Testing

Testing Extension changes can be done locally or through Dogfood Portal.

Local testing in Portal is done by sideloading code into Prod Portal.

1. Build LocSvcExtension project

2. Run LocSvcExtension

3. Navigate here with a favorite browser

4. Click “Allow” on pop-up related to “Untrusted Extensions!”

Dogfood Portal testing is done by running a build for IoT.LBS.Portal or checking in changes

to the master branch (see Publishing section). After a build and release for Dogfood Portal

have been completed, visit this page. The changes should be applied within 15 minutes of

release. If changes do not occur, make sure that browser cache is cleared.
Note: Also make sure that ?Microsoft_Azure_LocationServices=true is in the URI for Dogfood Portal.

Microsoft_Azure_LocationServices is our extension ID.

Publishing

Extension Package

Build
LocSvcExtension

Dogfood Storage blob

Production Storage blobRelease
LocSvcExtension

Gallery Package

To publish Extension changes live, a build must be started for IoT.LBS.Portal.

Generally, the build starts automatically when code is merged into the master branch.

The common guideline is to use:

master branch for Dogfood Portal

deployments/[number] branch for Production Portal

https://ms.portal.azure.com/?feature.canmodifyextensions=true&feature.UserType=test#blade/HubsExtension/Resources/resourceType/Microsoft.Maps%2Faccounts?testExtensions={"Microsoft_Azure_LocationServices":"https://localhost:44304/"}
https://df.onecloud.azure-test.net/?Microsoft_Azure_LocationServices=true
https://msazure.visualstudio.com/One/_build/index?context=mine&path=%5CCustom%5CAzure%5CIoT%5CAzure%20Maps&definitionId=24270&_a=completed

For any changes to take into effect, a unique Portal Extension version must be assigned.

This step is done automatically through Set-Portal-Version.ps1.

The version is defined as x.y.build_number.

x and y values are set in extension.pdl and AssemblyInfo.cs.

build_number is a uniquely assigned/generated value in each build.

For major changes, x and y should be manually modified.

When build completes, it will drop two packages: Gallery (azpkg) and Extension (zip).

Release is then created, and the Extension package is uploaded to

azurelsportalextension Azure Storage (known as PortalFx Extension Hosting Service).

When release completes, it should take up to 15 minutes for the changes to take effect in

Dogfood Portal.

Production Portal deployment is done

manually, where one must visit the release

page and click “Deploy”. Upon manager’s

approval, Production Portal changes should

take up to 15 minutes.

Note: Portal changes are deployed, by default, to all

regions at once. If region-by-region deployments are

necessary, contact Khalid Alquinyah and follow the

steps here.

https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FLocSvcExtension%2FLocSvcExtension%2FClient%2Fextension.pdl&version=GBmaster&line=3&lineStyle=plain&lineEnd=3&lineStartColumn=63&lineEndColumn=70
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FLocSvcExtension%2FLocSvcExtension%2FAssemblyInfo.cs&version=GBmaster&line=13&lineStyle=plain&lineEnd=14&lineStartColumn=1&lineEndColumn=43
https://msazure.visualstudio.com/One/_release?definitionId=1291&_a=releases
https://github.com/Azure/portaldocs/blob/master/portal-sdk/generated/portalfx-extension-hosting-service.md
https://df.onecloud.azure-test.net/?Microsoft_Azure_LocationServices=true
https://github.com/Azure/portaldocs/blob/master/portal-sdk/generated/portalfx-extension-hosting-service.md#step-6-upload-safe-deployment-config

PORTAL MARKETPLACE / GALLERY | Documentation

Dev Setup

1. Clone Azure-IoT-LocationBasedServices repository

2. Open Visual Studio 2017 as administrator

3. Open Portal folder and set LocSvcExtension as StartUp Project

4. Set as Debug and x64

5. Successfully build LocSvcExtension

6. Navigate to
root/packages/Microsoft.Azure.Gallery.AzureGalleryUtility.[latest_vers

ion]/tools

7. Visit https://github.com/Azure/portaldocs/blob/master/gallery-sdk/templates/gallery-

items.md#configuring-the-azure-package-loader-tool and follow the instructions.

 You will be downloading and installing the test certificate to your local machine.

 You will edit the appSettings in AzureGallery.exe.config within the folder.

Code Structure

LocSvcExtension

> GalleryPackages

 > Create

 > strings

 > resources.resjson

 Where all localizable strings are stored.

 Folders in strings are generated from Simpleloc (see Localization section).

 Strings can be referenced by ms-resource:[string_name]

 > Manifest.json

 Where gallery package is defined. Refer to docs.

 > UIDefinition.json

 Where you define links to other services like Portal Extension and Portal Startboard

(Dashboard button).

https://github.com/Azure/portaldocs/blob/master/gallery-sdk/generated/index-gallery.md
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices
https://github.com/Azure/portaldocs/blob/master/gallery-sdk/templates/gallery-items.md#configuring-the-azure-package-loader-tool
https://github.com/Azure/portaldocs/blob/master/gallery-sdk/templates/gallery-items.md#configuring-the-azure-package-loader-tool
https://github.com/Azure/portaldocs/blob/master/gallery-sdk/generated/index-gallery.md#gallery-item-details-blade

Testing

Testing Marketplace changes is done through Dogfood Portal (see Publishing section).

Publishing

Extension Package

Build
LocSvcExtension

Azure
Marketplace

Gallery Package Dogfood Azure
Marketplace

Azure Gallery Utility

1store@microsoft.com

To publish Marketplace/Gallery changes live, a new version number must be assigned.

Azure Marketplace will always render the latest/highest version to clients.

The version can be edited in Manifest.json and follows semantic versioning.

The Gallery package can be created by building LocSvcExtension locally (via VS 2017).

It can then be found at:
> root\src\LocSvcExtension\LocSvcExtension\App_Data\Gallery

After completing the Dev Setup steps 5 – 7,

use this command to upload the package to Dogfood Portal:
> AzureGallery.exe upload -p ..\path\to\package.azpkg

It should take at most 30 minutes for changes to take effect.

To publish changes to Production Portal, submit an email to v-thramu@microsoft.com (our

default contact) or 1store@microsoft.com with the desired/built azpkg as an attachment.

It should take at most 2 days, but generally completed by end of the day.

https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FLocSvcExtension%2FLocSvcExtension%2FGalleryPackages%2FCreate%2FManifest.json&version=GBmaster&line=5&lineStyle=plain&lineEnd=5&lineStartColumn=15&lineEndColumn=20
mailto:v-thramu@microsoft.com
mailto:1store@microsoft.com

Maintenance

Localization

Azure Portal requires that we have string translations for multiple languages. We achieve this

compliance by utilizing SimpleLoc. SimpleLoc monitors any changes to our

ClientResources.resx and resources.resjson in our master branch. Localization files

are refreshed twice a day; however, actual localization may take up to one week.

Though it’s not completely automated, we do have a script that will pull new files and overwrite

existing localization files.

1. Create a branch from the master branch

2. Run LocalizeProject.ps1

3. Submit a PR into the master branch after committing changes

SDK Versions

Azure Portal requires that we maintain the latest Portal NuGet packages. The requirement is

that we should not have portal packages that are older than 90 days, and Portal will

automatically raise a live site incident against us if we do not do so.

Portal packages are unfortunately frequently updated with breaking changes. Breaking changes

are noted portaldocs; however, it often runs days behind the latest package versions.

Sometimes the breaking changes are not noted as well…

To update to the latest Portal packages,

1. Create a branch from the master branch

2. Make sure that breaking changes are addressed

3. Open NuGet Package Manager for LocSvcExtension and LocSvcExtension.DataModels

4. Click on “Updates” tab, and filter by Microsoft.Portal

5. Update Portal packages

6. Make sure Portal is working as intended

7. Submit a PR into the master branch after committing changes

8. Portal package updates are applied only when the changes are published to Dogfood and

Prod Portal (see Publishing section in Portal Extension)

https://microsoft.sharepoint.com/teams/celoc4dev/SitePages/Build%20Systems/SimpleLoc.aspx
https://msazure.visualstudio.com/One/_git/Azure-IoT-LocationBasedServices?path=%2Fsrc%2FLocSvcExtension%2FLocSvcExtension%2FLocalizeProject.ps1&version=GBmaster
https://github.com/Azure/portaldocs/blob/master/portal-sdk/generated/breaking-changes.md

Misc

Portal Reference
https://aka.ms/portaldocs

Portal Extension API Reference
https://df.onecloud.azure-test.net/#blade/SamplesExtension/SDKMenuBlade/apiReference

https://aka.ms/portaldocs
https://df.onecloud.azure-test.net/#blade/SamplesExtension/SDKMenuBlade/apiReference

