
Page 1 of 72

Workflow modeler constructs and properties

Workflow modeler
Processes
Event listeners
Execution listeners
Expressions

Value expression
Expression functions
Retrieving and Updating task properties through task listeners
Retrieving and Updating process Instance properties through execution listeners

Construct properties
Start events

Start event
Start timer event
Start signal event
Start message event
Start error event
Start escalation event
Start event registry event

Intermediate catching events
Intermediate timer catching event
Intermediate signal catching event
Intermediate message catching event

Activities
User task
Http task
Script task
Mail task
Manual task
Receive task
Content task
Signature task
Send Event Task
Receive Event Task
External Worker Task

Gateways
Exclusive Gateway
Parallel gateway
Inclusive gateway
Event based gateway

Intermediate throwing events
Intermediate throwing none event
Signal intermediate throwing event
Intermediate escalation throwing event

Boundary events
Timer boundary event
Error boundary event
Signal boundary event
Escalation boundary event
Cancel and compensation boundary events
Boundary message event
Boundary event registry event

End Events
None end event
End error event
End escalation event
End cancel event
End terminate event

Swimlanes
Pool
Lane

Artifacts
Text annotation

Structural
Sub-process
Event sub-process
Call activity
Collapsed sub-process
Adhoc sub-process

Workflow modeler
The workflow modeler is the primary means to create BPMN diagrams and its user interface is roughly divided into four areas: the menu bar, palette, canvas,
and attribute bar.

Example

Page 2 of 72

Processes
The process editor’s purpose is to model processes with elements that make up a process. The process also has a number of attributes that can be set.

Graphical notation

See the Workflow modeler example.

Attributes

Attribute

Description

Process
Identifier

Unique identifier of the process.

Name Name of the process.

Process
author

Author of the process (for documentation purposes).

Process
version
string
(document
ation only)

Current version of the process.

Target
namespace

Grouping of the models.

Set a
specific
history
level for
this
process
definition

Indicates how much chronicled data has stored for the process: None, Activity, Audit, or Full.

Asynchron
ous history
update

Check to decide a model level configuration to update workflow-history either synchronously or asynchronously. By default, In modeler asynchronous history update option is checked.

Is
executable

Decides if the process is executable. Non-executable processes just serve documentation needs and can't be started.

Page 3 of 72

Data
objects

Definition of data objects (metadata) available in the process.

Encrypt data for privacy :

Use this option to encrypt the data used in data objects. By default, data objects are not selected for encryption.

Potential
starter user

One or more users to which instantiation of this process is restricted to.
A comma-separated list of users.

Potential
starter
group

One or more groups to which instantiation of this process is restricted to. Only users who are part of atleast one of these groups can create an instance of this process.
A comma-separated list of groups.

Execution
listeners

Active execution listeners will respond to the following events occurred on a process:

Start: Happens when the process instance starts.
take: hen the process instance transition is taken Happens w
End : Happens when the process instance completes.

Event
listeners

Event listeners of this process that can react to many different events.

Signal
definitions

Definition of all signals used in the process.

Message
definitions

Definition of all messages used in process.the

Escalation
definitions

Definition of all escalations used in process.the

Event listeners
Workflow modeler provides a way to handle below events of a process, and to send mail notification when these events occur during process execution.

Events Mail Notification

Page 4 of 72

Activity

ACTIVITY_CANCELLED

ACTIVITY_COMPENSATE

ACTIVITY_COMPLETED

ACTIVITY_ERROR_RECEIVED

ACTIVITY_MESSAGE_CANCELLED

ACTIVITY_MESSAGE_RECEIVED

ACTIVITY_MESSAGE_WAITING

ACTIVITY_SIGNALED

ACTIVITY_SIGNAL_WAITING

ACTIVITY_STARTED

Yes

Process

PROCESS_CANCELLED

PROCESS_COMPLETED

PROCESS_COMPLETED_WITH_TERMINATE_END_EVENT

PROCESS_COMPLETED_WITH_ERROR_END_EVENT

PROCESS_CREATED

PROCESS_STARTED

Yes

Task

TASK_ASSIGNED

TASK_COMPLETED

TASK_CREATED

Yes

Mail notification takes below attributes.

Attribute Description

To The receivers of the email. Multiple emails can be added using comma-separated list.

From .The email address of sender. If not given, the default provided "from address" is used

CC The CC (Carbon Copy) email recipients. Multiple emails can be added using comma-separated list.

BCC The BCC (Blind Carbon Copy) recipients. Multiple email emails can be added using comma-separated list.

Subject The subject of the email.

Mail text Email text. If at receiver's end, HTML is not supported then email is displayed in text format.

Headers Mail headers

Text variable Process instance variable

HTML Email content in HTML format. This allows for creation of rich formatting and usage of images.

HTML variable Process instance variable

Charset Character set to be used in the email.

Execution listeners
Execution listeners allows user to execute a custom action when certain events occur during process execution. The events that can be captured are:

Start: Configures the listener when a process instance starts
take: rocess instance transition is doneConfigures the listener when a p

Page 5 of 72

End : Configures the listener when a process instance completes

For each event, below actions can be configured.

Execute an expression

 Given expression is evaluated based on the process instance data.

Send a notification

 A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with the listener
event execution. It works similar to the activity.Mail Task

Execute a script

 A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Script Task
activity.

Publish an event

 Configure this option to publish an event to OT2 event service for a specific event type. 'Event key' is the event type Id which is part of OT2 event
service. 'Event data' is the application data expected in JSON format. Application data can be published to event server as described in Workflow Listeners
data Integration with OT2 Event Service

Expressions
Unified Expression Language (UEL) is used by Workflow for expression-resolving. In Conditional sequence flows, Task Listeners, Execution Listeners and Java
Service tasks these expressions are used.

Value expression

This expressions resolves to a value. By default, all process variables are available to use.

Some examples :
${myVar}

Apart from all process variables, there are a some default objects which are available that can be used in these expressions:

execution: The DelegateExecution contains more information about current execution. Execution can be used to create process global variables from
execution listeners.

task: The DelegateTask contains more information about current Task. Task can be used to create task local variables from task listeners.

Some examples for value expressions are :

Creating Process Variables :
${execution.setVariable(String VariableName , Object Value)}

Creating Task Variables :
${task.setVariableLocal(String VariableName , Object Value , boolean Flag)}

Retrieving Process Variable Value :
${execution.getVariable(String VariableName)}

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+Listeners+data+Integration+with+OT2+Event+Service
https://confluence.opentext.com/display/PDi/Workflow+Listeners+data+Integration+with+OT2+Event+Service

Page 6 of 72

Retrieve Task Variable Value :

${variables:get(String VariableName)}

Null Checking:
${VariableName == null}

Checking for a Variable :Value
${VariableValue == Value}

Conditional Statement :

${Variable Logical_Operator Value? Expression to be evaluated if true : Expression to be evaluated if false)}

Example : ${Variable >= 10 ? execution.setVariable("Permission","accepted") : execution.setVariable("Permission","rejected")}

Expression functions

Under the variables namespace a set of out-of-the-box functions are available, To make working with process variables easy.

variables:get(varName) :

Retrieves the value of a variable. If we use variable name directly in the expression and if that variable doesn't exist then we throw an exception but if we use
get function then we won’t throw any exception even if the variable doesn’t exist. For example ${varName == "hello"} would throw an exception if
varName doesn’t exist, but ${var:get(varName) == 'hello'} will just work.

variables:getOrDefault(varName, defaultValue) :

Similar to get, but here we can initialize variable with a default value, returns default value when the value is null or variable isn’t set.

variables:exists(varName) :

Returns true if the variable has a non-null value.

variables:isEmpty(varName) (alias :empty) :

Checks if value is not empty. If variables are of type String then they are said to be empty if string is empty. If variable is null, always true is returned.

variables:isNotEmpty(varName) (alias :notEmpty) :

The reverse operation of isEmpty.

variables:equals(varName, value) (alias :eq) :

Checks if a given value is equal to the variable. This function is a shorthand for the expression ${execution.getVariable("varName") != null && execution.
getVariable("varName") == value}.

If the variable value is null, false is returned (unless compared to null).
variables:notEquals(varName, value) (alias :ne) :

The reverse comparison of equals.

variables:contains(varName, value1, value2, …) :

Checks if all values provided are contained within a variable. If variables are of type String, then passed values are used as substrings that need to be part of
the variable.

variables:containsAny(varName, value1, value2, …) :

Same as contains function, It returns true even if any one of the passed values are present in the variable value.

variables:base64(varName) :

Converts a Binary or String Variable in Base64 String.

variables:lowerThan(varName, value) (alias :lessThan or :lt) :

Shorthand for ${execution.getVariable("varName") != null && execution.getVariable("varName") < value}

variables:lowerThanOrEquals(varName, value) (alias :lessThanOrEquals or :lte) :

Similar, but now for < =

variables:greaterThan(varName, value) (alias :gt) :

Similar, but now for >

variables:greaterThanOrEquals(varName, value) (alias :gte) :

Similar, but now for > =

Page 7 of 72

Note: The variables namespace is aliased to vars or var. So variables:get(varName) is equivalent to writing vars:get(varName) or var:get(varName).

Retrieving and Updating task properties through task listeners

Using expressions we can either retrieve or update task properties like name, priority, description, due date, assignee, etc of a task in the task listeners. Below
are some examples of how to retrieve and update some of the task properties.

Task Name :

The task name can be retrieved using the below expression.

${task.getName()}

The task name can be updated using the below expression.

${task.setName("Sample Task")}

Task Priority :

The task priority can be retrieved using the below expression.

${task.getPriority()}

The task priority can be updated using the below expression.

${task.setPriority(10)}

Task Description :

The task description can be retrieved using the below expression.

${task.getDescription()}

The task description can be updated using the below expression.

${task.setDescription("Sample Description")}

Task Assignee :

The task assignee email can be retrieved using the below expression.

${task.getAssignee()}

The task assignee otds uuid can be retrieved using the below expression.

${task.getAssigneeUuid()}

The task assignee can be updated using the below expression.

${task.setAssignee("sampleuser@ ")} or ${task.setAssignee(" ")}opentext.com d91e60a2-1fed-4c84-96a2-1ff117fbe2dd

Task DueDate :

The task due date can be retrieved using the below expression.

${task.getDueDate()}

The task due date can be updated using the below expression.

${task.setDueDate(2020-09-22T03:25:18.108Z)}

Task Id :

The task id can be retrieved using the below expression.

${task.getId()}

Process Instance Id :

The task process instance id can be retrieved using the below expression.

${task.getProcessInstanceId()}

Retrieving and Updating process Instance properties through execution listeners

The process instance properties can be retrieved and updated using the expressions in execution listeners, these expressions can be used on process
executions listeners and not on task.

Process Instance Id :

http://opentext.com

Page 8 of 72

The process instance id can be retrieved using the below expression.

${execution.getProcessInstanceId()}

Process Instance Name :

The process instance name can be retrieved using the below expression.

${execution.getName()}

The process instance name can be updated using the below expression.

${execution.setName("Sample Process Name")}

Process Start User Id :

The process start user email can be retrieved using the below expression.

${execution.getStartUserId()}

The process start user otds uuid can be retrieved using the below expression.

${execution.getStartUserUuid()}

The process start user id can be updated using the below expression.

${execution.setStartUserId("exampleuser@ ")} or ${execution.setStartUserId(" ")} opentext.com d91e60a2-1fed-4c84-96a2-1ff117fbe2dd

Process Business key :

The process business key can be retrieved using the below expression.

${execution.getBusinessKey()}

The process business key can be updated using the below expression.

${execution.setBusinessKey("Sample Business Key")}

Process Definition Key :

The process definition key can be retrieved using the below expression.

${execution.getProcessDefinitionKey()}

The process definition key can be updated using the below expression.

${execution.setProcessDefinitionKey("Sample Process Definition key")}

Process Definition Id :

The process definition id can be retrieved using the below expression.

${execution.getProcessDefinitionId()}

Process Definition Name :

The process definition name can be retrieved using the below expression.

${execution.getProcessDefinitionName()}

Construct properties
Many constructs are available to create a business process and are arranged into logical groups. Selecting an item on the canvas displays a list of properties to
configure.

Start events

A start event specifies where a process initiates. The type of start event defines how the process starts, for example, on arrival of a message or at a specific
time interval.

Start event

A start event implies that the trigger to start the process instance is unspecified and the business process engine cannot anticipate when to start it. A start
event triggers a process instance by an API call to any of the startProcessInstanceByXXX functions.

Graphical notation

http://opentext.com

Page 9 of 72

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Initiator Variable name containing authenticated user ID is stored when the process is triggered.

Form Properties Sets the form properties.

Form Key Form related URLs to use in applications.

Validate form fields (server-
side)

If validate form fields expression evaluates to true, once the form is submitted then fields of the form are validated as per
form model restrictions.

Start timer event

A start timer event creates a process instance at a specific time. It can be used for processes that must start only once and at specific time intervals.

Note: A subprocess cannot have a start timer event.

Graphical notation

Example

Attributes

Page 10 of 72

1.
2.
3.
4.
5.
6.

7.
8.
9.

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution
listeners

Active execution listeners of the activity.

Time cycle
(e.g. R3
/PT10H)

Defines a repeating time interval, This is used to send multiple reminders for a delayed user task or to start the process periodically. Time
cycle component can be in repeating time duration format as defined by the ISO 8601 standard. example, three repeating time intervals,
lasting 10 hours each. We can also use e.g corn expression 0 0/5 * * * ? shows trigger firing every 5 minutes, starting at the full hour. We
can also provide the end date as an attribute to the time cycle such as <timeCycle flowable:endDate="2015-02-25T16:42:11+00:00">R3
/PT10H</timeCycle>

Time date
in ISO-860
1

Specifies a fixed date (ISO 8601 format) when the trigger will fire.

Time
duration (e.
g. PT5M)

Specifies how long the timer must run before it is fired. A timeDuration can be defined as a sub-component of timerEventDefinition
. The ISO 8601 format is used as required by the BPMN 2.0 specification.

Start signal event

Start signal event triggers a process instance by using named signal. This signal can be fired within a process instance through the API or using intermediary
signal throw event. In these both cases, all the process definitions which have signal start event with same name will be started.

Graphical notation

Example

Perform the following steps:

Create a process model() Process1 with start signal event.
In the process attributes 'signal definitions' create a required named signal (eg: ' ').alert
In the 'signal event' attributes click on the 'Signal reference' drop-down menu and select the created named signal.
Similarly, create another process model()Process2
In the process attributes 'signal definitions' create a required named signal (eg: ' ').alert
Add 'Intermediate signal throwing event' to the model, In the 'signal event' attributes click on the 'Signal reference' drop-down menu and select the
created named signal.
Deploy (save and publish) both the models.
Now trigger process. Process2 This process instance will throw the ' ' event globally. alert
Then model start signal event receives this signal and it initiates the process.Process1 Process1

Attributes

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
http://en.wikipedia.org/wiki/ISO_8601#Dates
http://en.wikipedia.org/wiki/ISO_8601#Durations

Page 11 of 72

1.
2.
3.
4.
5.

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Signal reference Provide the signal name

Interrupting Check this option to terminate all parent execution

Start message event

Message start event triggers a process instance by using named message. This makes us to choose the correct start event from a set of other alternative start
events by using message name. Message start event name must be unique over all deployed process definitions. Multiple message start events on a process
definition with the same name are not allowed.

Graphical notation

Example

Perform the following steps:

Create a process model with start message event.
In the process attributes 'message definitions' create a required named message (eg: 'MessageRef').
In the 'message event' attributes click on the 'Message reference' drop-down menu and select the created named message.
Deploy (save and publish) the model.
Execute workflow rest API '/runtime/process-instances' with the given message name 'MessageRef' to initiate the above process as below in "body"

Example request body:

{
 "message" : "MessageRef"
}

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Page 12 of 72

1.
2.
3.
4.
5.
6.

Message reference Provide the message name

Interrupting Check this option to terminate all parent execution

Start error event

An start error event can trigger an event sub-process but not a process instance.

Graphical notation

 Example

Perform the following steps:

Create a process model with an End error event.
Type an error name in Error reference.
Add the Event sub-process with a Start error event to the model.
Similarly, for the Start error event, type the same error reference.
Save and publish the model.
Trigger the process. The End error event throws an error. The error event is captured by the Start error event and initiates the sub-process.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Error reference Name of the error.

Interrupting Terminates all parent execution, if selected.

Start escalation event

An escalation start event can trigger an event sub-process but not a process instance. Unlike an error, an escalation event is non-critical and execution
continues at the point where the error is thrown.

Graphical notation

Page 13 of 72

1.

2.
3.
4.
5.
6.

Example

 Perform the following steps:

Create a process model and add the required named escalation in the escalation definition in the process attributes.

Add an Intermediate escalation throwing event or an End escalation event to the model and select the created escalation reference.
Add the Event sub-process with the Start escalation event to the model.
Similarly, for the Start escalation event, add the same error reference.
Save and publish the model.
Trigger this process. The Intermediate escalation event or End escalation event throws an escalation. This escalation event is captured by the Start
error event and initiates the sub-process.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Escalation reference Name of the escalation.

Interrupting Terminates all parent execution, if selected.

Start event registry event

Page 14 of 72

A start registry event creates a process instance with an incoming event, along with a correlation. This means when an appropriate event is received through
When the event is received, the process the event registry, all the process definitions which have start registry event with the same event key will be started.

instance is created asynchronously. Any errors in the process execution can be handled and recovered as deadletter jobs.

Graphical notation

Example

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Event Key Key of the deployed event definition.

Event name Name of the event definition.

Mapping from event
payload

The required event payload values can be mapped to process variables.

Correlation parameters When multiple process definitions are deployed, then the incoming event message can be matched against one of the
correlation parameter.

Mapping from event payload :

Parameters can be configured to create required process variables from the event payload and can be used anywhere in the execution.

Page 15 of 72

In the above example, three event parameters i.e document, event_type and status from event payload will be mapped to process variables document_var,
event_type_var and status_var.

Correlation parameters :

Parameters can be configured to match the values against event payload, we could match multiple correlation parameters, if all of the correlation parameters
are matched with the values of the received event payload then only that process definition process instant will get created.

In the above example, one correlation parameter i.e status needs to match exactly against the status of the received event payload.

Intermediate catching events

Intermediate timer catching event

Intermediate timer event behaves as a stopwatch. Timer starts when an execution comes at catching event activity. When the timer is fired (after some
specified interval), the sequence flow going out of the intermediate timer event is followed.

Graphical notation

Example

When the process executes, after the first activity completes, the timer waits for 10 minute (PT1M) to process the next activity.

Attributes

Attribute Description

Page 16 of 72

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution
listeners

Active execution listeners of the activity.

Time cycle
(e.g. R3
/PT10H)

Defines a repeating time interval, This is used to send multiple reminders for a delayed user task or to start the process periodically. Time
cycle component can be in repeating time duration format as defined by the ISO 8601 standard. example, three repeating time intervals,
lasting 10 hours each.

Time date
in ISO-8601

Specifies a fixed date (ISO 8601 format) when the trigger will fire.

Time
duration (e.
g. PT5M)

Specifies how long the timer must run before it is fired. A timeDuration can be defined as a sub-component of timerEventDefinition
. The ISO 8601 format is used as required by the BPMN 2.0 specification.

Intermediate signal catching event

Intermediate signal catching event is used to catch signals having same signal name as referenced signal definition. If two signal events are active and
catching the same signal event, even though they are part of different process instances both events will be triggered.

Graphical notation

Example

When the process executes, after the first activity completes, the signal event waits for the alert named signal event to process the next activity. The signal
can be fired within a process instance using the API discussed in the start signal event or through intermediary signal throw event.

To trigger the signal event on a specific process instance, use the rest API . Pass the signal name in the request /runtime/executions/{executionId}
body.

Example request body

{
 "action":"signalEventReceived",
 "signalName":"alert",
 "variables": []
}

To obtain the required process instance executionId, use the rest API POST /query/executions.

Example request body

http://en.wikipedia.org/wiki/ISO_8601#Dates
http://en.wikipedia.org/wiki/ISO_8601#Durations

Page 17 of 72

{
 "processInstanceId": "72fb2ddf-1060-11ea-ba8c-3ce1a14eadub",
 "signalEventSubscriptionName": "alert"
}

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Signal reference Name of the signal.

Intermediate message catching event

Intermediate catching message is used to event catches messages with a specified name.

Graphical notation

Example

When we execute the above process, After completion of first activity message event wait for the 'NewBooking' named message to process the next activity.

To trigger the message event use the rest API '/runtime/executions/{executionId}', pass the message name in the request body.

Example request body

{
 "action": "messageEventReceived",
 "messageName": "NewBooking",
 "variable": []
}

To get the required process instance executionId, use the rest API 'POST /query/executions

Example request body

Page 18 of 72

{
 "processInstanceId": "72fb2ddf-1060-11ea-ba8c-3ce1a14eadfb",
 "messageEventSubscriptionName": "NewBooking"
}

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Message reference Provide the message name

Activities

User task

A user task is a common workflow task where humans perform an action with the help of a software application. Task list manager schedules a user task. In a
workflow, the main way of interacting with humans involved in a process is through user tasks. When execution reaches such a task, then the user is needed to
fill the form. Using forms, we can create and update variables that can be used in other tasks and can be used anywhere in the process to control the flow of
execution. Each task can be shared with any number of groups and can be assigned to one or more users. An optional due date can also be provided for a
task.

Graphical notation

Example

Attributes

Group Attribute Description

General ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Page 19 of 72

Details Form Properties Sets the form properties.

Form Key Form related URLs to use in applications.

Validate form
fields (server-side)

If v expression evaluates to true, once the form is submitted then fields of the form are validated as per form model restrictions.alidate form fields

Page 20 of 72

Task listeners Used to set task listeners on this task. which allows us to respond to below events:

Create: It happens when task is created and when all properties of task are set.
Assignment: This assignment event is triggered before the Create event, It happens when the task is assigned to someone.
Complete: It takes place before the task is removed from the runtime data and when the task is complete.

For each event, below actions can be configured.

Execute an expression

 Given expression is evaluated based on the task instance data.

Send a notification

 A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with the listener event execution. It works similar to the Mail
 activity.Task

Execute a script

 A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the activity.Script Task

Publish an event

 Configure this option to publish an event to OT2 event service for a specific event type. 'Event key' is the event type Id which is part of OT2 event service. 'Event data' is the application data
expected in JSON format. Application data can be published to event server as described in Workflow Listeners data Integration with OT2 Event Service

Asynchronous When task is set in asynchronous mode, It introduces a wait state when execution reaches to that task.

: In many scenarios, there must not be any reason using this attribute in user task.Note

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process instance then none are executed at the same time.

Execution listeners Active execution listeners will respond to the process instance events occurred on a Activity. Check Execution Listeners Configuration

Priority An integer number denoting the priority of the task.

Due date Due date of the task. is the default and there are three different options to set a due date:No due date

Relative: Relative to the current date we could add or subtract no. of days, months, or years.
Absolute: An absolute date will be set.
Expressions: An expression is used to calculate the date dynamically.

Skip expression Task execution is skipped, If skip expression evaluates to true.

: For skip expression to evaluate there should be a process variableNote boolean _WORKFLOW_SKIP_EXPRESSION_ENABLED with value true.

Is for
compensation

If an activity serves as compensation for another activity.

Task
Nature

4 eye 4 eye task nature configure states that no two linked task have the same user to work on it. configuring 4 eye is only valid to previous completed task.

Ex: start --->usertask1------>usertask2-----end

usertask2 can configure 4 eye nature on usertask1 and vice versa will be ignored.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+Listeners+data+Integration+with+OT2+Event+Service
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Executionlisteners

Page 21 of 72

Rendezvous Rendezvous task nature configure states that two linked task must have the same user to work on it. configuring is only valid to previous completed task.Rendezvous

Ex: start --->usertask1------>usertask2-----end

usertask2 can configure nature on usertask1 and vice versa will be ignored.Rendezvous

Note: Task nature properties are missing after importing a model. A open ticket is present () - FLOW-986 Getting issue details...

Delivery options

Assignm
ents

This tab lets you define one or more assignments on a user task. Configuring a single assignment delivers a single task instance, whereas, configuring multiple assignments delivers multiple instances of the task, one to each
assignment.

A multi-instance task can be further classified into two categories,
The multiple instances of the task are delivered one after another to each assignment. Serial multi-instance task: Initially, one task instance will be delivered to the first assignment. On completion of it, a second task is

delivered to the second assignment and so on. The order will be the same as the order of the assignments in the table. Uncheck option to achieve this.Deliver task to the assignments in parallel
 The instances of the task Parallel multi-instance task: are delivered to all the configured assignments at once in parallel. Check Deliver task to the assignments in parallel option to achieve this.

Hereafter, a task with single assignment is referred to as a single-instance task, whereas a task with multiple assignments as a multi-instance task.

Multi-instance task with dynamic assignments: A multi-instance task can be designed to take the assignments at runtime as opposed to pre-defined assignments in the grid.Assignments

https://jira.opentext.com/browse/FLOW-986

Page 22 of 72

This way you can give a JSON collection variable name through which you intend to insert assignments in the runtime.

The value of the multi-instance dynamic assignment collection variable must be given in the following JSON format:

[
 {
 "assignee":"srihariv@opentext.com",
 "candidateUsers":"dmallela@opentext.com,lvilluri@opentext.com",
 "candidateGroups":"Architecture"
 },
 {
 "assignee":"svijay@opentext.com",
 "candidateUsers":"nyandapa@opentext.com,srihariv@opentext",
 "candidateGroups":"Design"
 }
]

Task Type
Default - A normal task with/without a custom set of possible outcomes
Approval - A task with two predefined outcomes and .Approve Reject

Assignee Assignee of a task who is responsible for task completion. By default, the assignee is set to , which is a special variable set to the user who started the process. Set the assignee directly or $INITIATOR
through an expression. The assignee value should be set to the user's OTDS id or email.

The assignee user should be a valid user in the tenant and subscription context (created and managed using Admin Center or ETS), where the process instance would be created and the task delivered.

Candidate users List of users who can become assignees by claiming the task. Update the candidate users directly or use an expression. The candidate user's value should be set to the user's OTDS id or email. Multiple
candidate users can also be provided.

The candidate users should be valid users in the tenant and subscription context , where the process instance would be created and the task delivered.(created and managed using Admin Center or ETS)

Page 23 of 72

Candidate groups One or more groups that can become assignees by claiming the task. Update the group directly or use an expression. The candidate groups value should be set to the application role name or group
name, created and managed using Admin Center or ETS. Multiple candidate groups can also be provided.

The group should be a valid application role or a group with associated user mappings in the provided tenant and subscription context , where the (created and managed using Admin Center or ETS)
process instance would be created and the task delivered.

Assign to process
initiator

Denotes if the task instance should be assigned to the user who started the process. If enabled, no assignment can be configured.
Available only on a single-instance task.

Allow process
initiator to
complete task

Denotes if the user who started the process is allowed to complete the task.
Available only on a single-instance task.

Deliver task to the
assignments in
parallel

Checking this option lets the task behave as a parallel multi-instance task, else, as a serial multi-instance task.
Available only on a multi-instance task.

Outcom
es

This tab lets you configure a set of possible outcomes on the task. The assignee should select one of these possible outcomes on completion of a task instance.

Possible outcomes The set of possible outcomes from which the assignee can select one as the outcome.

For a Default task, any number of possible outcomes can be configured.
For an Approval task, The possible outcomes are restricted to two predefined values, and . However, each of these outcomes can be given a custom name. For instance, "Yes" for Approve Reject Appr

 and "No" for .ove Reject

Customized value The custom string representation of the outcome. For instance, "Yes" for Approve and "No" for Reject.
Available only on an approval task.

Condition for
completion

On a multi-instance task, the percentage of an outcome needed for completing the task and moving forward to the next activity.
Eg. Consider a multi-instance approval task with 4 assignments. If the task has to move forward if atleast 2 of the assignments approve the task, the should be set at 50%.Condition for completion
Available only on a multi-instance task.

Task outcome
response variable
name

The name of the variable to which the outcome of the task is stored to. This variable can later be used in the flow of the bpm. Eg. Use a gateway to define approval and rejection paths

For a single-instance task, the outcome variable is stored as a string variable that represents the value of the outcome selected by the assignee. For an approval task, the corresponding customized
value of the selected outcome is stored.
Eg. Consider a single-instance task, with outcomes configured as shown in the above screenshot. If the assignee, approves the task and completes it, the value of the outcome variable,
Project_Outcome will be as follows:

"Project_Outcome" : "Yes"

Page 24 of 72

1.
2.
3.
4.

For a multi-instance task, the outcome variable is stored as a JSON variable that contains the count of each possible outcome selected by the assignees along with the status and outcome of each
assignment configured on the user task. The assignments with their specific outcomes are stored in an field , in the same order as configured on the user task. Each entry has the "taskAssignments"
following fields:

 field will have assignment details("assignment" assignee, candidate users and candidate groups) configured on the user task.
 field shows the outcome selected by the assignee. This field is only visible for assignments whose corresponding workflow tasks are completed with a possible outcome."outcome"

 field shows the current status of task with the respective assignment. The possible values for this field are,"status"

'pending' - This is the initial state where for a configured assignment on the user task the workflow task is not created.
'active' - This state indicates that a workflow task is created for the specified assignment.
'complete' - This state indicates that the workflow task is completed by a user by providing an outcome and the provided outcome is stored in "outcome" field.
'skipped' - This state indicates that the assignment is ignored because the completion condition is satisfied and execution is moved forward to next step.

Eg1. Consider a multi-instance approval task with 3 assignments. Let the outcomes are configured as shown in the above screenshot. 2 of the assignees approved the task which according to the
completion condition should move the task forward. In this scenario, the value of the outcome variable, Project_Outcome, will be as follows:

"Project_Outcome" : {
 "Yes" : 2,
 "No" : 0,
 "completionCondition" : "true",
 "taskAssignments": [
 {
 "assignment":{
 "assignee": "dmallela@opentext.com",
 "candidateUsers": "",
 "candidateGroups": ""
 },
 "outcome": "Yes",
 "status": "complete"
 },
 {
 "assignment":{
 "assignee": "",
 "candidateUsers": "",
 "candidateGroups": "QA, Dev"
 },
 "outcome": "Yes",
 "status": "complete"

 },
 {
 "assignment":{
 "assignee": "",
 "candidateUsers": "rjuyal@opentext.com, dmallela@opentext.com",
 "candidateGroups": ""
 },
 "status": "skipped"
 }
]
}

Eg2. Consider a multi-instance approval task with 3 assignments with sequential delivery. Let the outcomes are configured as shown in the above screenshot. 1 of the assignees approved the task
and the task is pending at second assignee. In this scenario, the value of the outcome variable, Project_Outcome, will be as follows:

Page 25 of 72

"Project_Outcome" : {
 "Yes" : 1,
 "No" : 0,
 "completionCondition" : "false",
 "taskAssignments": [
 {
 "assignment":{
 "assignee": "dmallela@opentext.com",
 "candidateUsers": "",
 "candidateGroups": ""
 },
 "outcome": "Yes",
 "status": "complete"
 },
 {
 "assignment":{
 "assignee": "",
 "candidateUsers": "",
 "candidateGroups": "QA, Dev"
 },
 "status": "active"

 },
 {
 "assignment":{
 "assignee": "",
 "candidateUsers": "rjuyal@opentext.com, dmallela@opentext.com",
 "candidateGroups": ""
 },
 "status": "pending"
 }
]
}

Http task

The HTTP task allows us to make an HTTP call and can store the response.

Graphical notation

Example

Starting 21.1, Workflow supports OTDS Id for user assignments, retaining the email id support for backward compatibility. Workflow recommends
the usage of OTDS Id and plans to deprecate email id support in the coming releases

Page 26 of 72

Attributes

Group Attribute Description

General ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Details Request
method

Request method to use in the HTTP call: , , or .GET POST PUT, DELETE

Request
headers

Line-separated HTTP request headers.

Request
URL

URL of the HTTP request which can contain expressions, for example, http://your-system.example.com/your-endpoint
}./${someVariable

Request
body

Request body to send, for example, a JSON file. Use expressions, for example, {'clientId': ${clientId}, 'name':
.${name}}

Request
body
encoding

Encoding of the request body.

Request
timeout

Request timeout in milliseconds.

Disallow
redirects

Whether HTTP redirects can be redirected.

Fail status
codes

List of HTTP response status codes to make the request fail and throw a workflow exception. Code ranges can be set with a
wildcard for example, , , and .X, 400 404 5XX

Handle
status
codes

List of status codes for which the task throws a BPMN error, which can be caught by a boundary error event. Code ranges can
be set with a Status codes in override those in wildcard X,for example, 400, 404, and 5XX. handleStatusCodes failStatu

 when they are both set.sCodes

Ignore
exception

Whether exceptions are ignored and stored in the variable indicated in the response variable.

Response
variable
name

Variable name in which the HTTP response is stored.

Save
request
variables

Whether all request variables are stored. By default, only response related variables are stored as variables.

Save
response
details

Whether response variables including HTTP status and headers are stored. By default, only the response body is stored as a
variable.

http://your-system.example.com/your-endpoint/${someVariable
http://your-system.example.com/your-endpoint/${someVariable

Page 27 of 72

Result
variable
prefix

Prefix is used is used before variable names. The variables are : for easier grouping of result variables, prefix affected respons
, .eStatusCode errorMessage, responseReason, responseProtocol, responseBody and responseHeaders

Save
response
as JSON

Whether the response variable is stored as a JSON variable instead of a string.

Save
response
as a
transient
variable

Whether the response variables are stored as transient.

Asynchrono
us

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and
the process execution resumes asynchronously. This is used when the task execution takes much time to return to the user
interface. but, if any error occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same
process instance then none are executed at the same time.

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the starts.Activity
End : Happens when the completes.Activity

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent
synchronously with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works
similar to the activity.Script Task

Skip
expression

Task execution is skipped, If skip expression evaluates to true.

Note: For skip expression to evaluate there should be a boolean process variable _WORKFLOW_SKIP_EXPRESSION_ENABLED
with value true.

Is for
compensati
on

If an activity serves as compensation for another activity.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 28 of 72

Authenticati
on Details

Authentication Details to fetch OAuth2 token for HTTP request.

If 'use current authentication token' selected the access token of current authentication is used for the http request.

Note: This 'use current authentication token' is applicable only for internal OT2 service calls with synchronous execution
sequence.

The workflow uses different OTDS authentication grant types such as password, client_credentials nad authorization code to
 generate the access token.

Content type Which type of data to be sent to OTDS authentication server e.g "application/x-www-form-urlencoded"

Authentication
URL

Provide the OTDS authentication URL

Client ID Provide the client identifier provided by the authorization server.

Client secret Provide the client secret provided by the authorization server.

Grant type Provide the grant type to be used to generate an access token.
Supported grant type to generate an access token for workflow service are password, client_credentials,
and authorization_code

Scope Provide the scope value given to OTDS to get access token

Client data Provide client data value given to OTDS to get access token

Username Provide username used with the password grant type

Password Provide password used with the password grant type

Redirect URI When requesting authorization using the authorization code grant
type, specify a redirection URI via the "redirect_uri"
parameter.

Code Provide an authorization code that the client previously received from the authorization server.

Multi-
instance

Multi
instance
type

Whether this activity is performed multiple times and how it is performed. The values are:

None: The is executed once only.activity
Parallel : The is many times with each instance occurring at the same time as others.activity executed
Sequential: The is many times, one instance following on from the previous one.activity executed

Cardinality
(Multi-
instance)

Number of times to perform the .activity

Collection
(Multi-
instance)

Process variable name which contains a collection for each item in this collection, an instance of this will be created.activity

Element
variable
(Multi-
instance)

Name of a process variable, which holds the current value of the collection in each activity instance.

Page 29 of 72

1.
2.

Completion
condition
(Multi-
instance)

Multi-instance task ends when all instances end. we can provide an expression which can evaluate each time when an
instance ends, If that evaluates to true all remaining instances will be destroyed and the multi-instance task ends.

Example request URL

https://otdsauth-was.dev.bp-paas.otxlab.net/oauth2/token?
grant_type=password&client_id=pmc&client_secret=qu8l1ty&scope=readwrite
search&username=<<validuser>>&password=<<password>>&client_data=subName%3D<<subscriptionName>>

After completion of the HTTP task, the results response is stored in the in the format. By default, it is a string. To Response variable name JSON/string
store the response in the JSON format, set Save response as JSON value to .true

Response parsing

As described in Attributes, the response from the HTTP task can be stored as JSON to a variable named and by setting Save Response variable name
response as JSON to . This can further be parsed and saved to multiple variables using execution listeners. The following steps explain how to perform true
this with an example:

Set to a name, for example, . Set the Save response as JSON property to .Response variable name getTasksResponse true
Configure execution listeners on the HTTP service task and create an end event. Write an expression on the event, which obtains a JSONPath value
from the variable and sets it to a new variable.getTasksResponse

The expression in this example is , which extracts the ${execution.setVariable("assignee", getTasksResponse.data[0].assignee)}
assignee from and sets it to a new variable . getTasksResponse assignee
This adds a new node to the children of the node in the BPM definition.executionListener serviceTask

<workflow:executionListener event="end" expression="${execution.setVariable("assignee",
getTasksResponse.data[0].assignee)}"></workflow:executionListener>

The execution listeners and task Listeners can be used to create variables for a process instance and task. The variables that are created using task
listeners are bound to a task. The following expressions are used to create variables:

Process variables creation through execution listeners: ${execution.setVariables(variable_name,varaible_value)}
Task variables creation through task listeners: ${task.setVariableLocal(variable_name,variable_value,true)}
The last parameter must be true for creating task local variables.

Page 30 of 72

The supported data types are long, double, string, boolean, and date. The data type is decided based on the the provided value. For example, if the
provided value is , the string variable is created. If the value is 12, the long variable is created, and if the value is or , the boolean Hello true false
variable is created.

Script task

Business process engine executes a script task. Engine can interpret the language defined by modeler or implementer. Engine executes the script when
activity is about to start, When script execution is complete the task also completes. In Workflow, scripts are executed in a JSR-223-compatible scripting
language, for example JavaScript. Script tasks are used to perform simple operations or calculations.

Graphical notatio

Example

Example script task (JavaScript) to parse the JSON variable and store in the required variablesuserInfo

Page 31 of 72

var userDetails = execution.getVariable("userInfo");
userDetails = JSON.parse(userDetails);
execution.setVariable("firstName", userDetails.firstName);
execution.setVariable("lastName", userDetails.lastName);

Attributes

Group Attribute Description

General ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Details Asynchrono
us

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and
the process execution resumes asynchronously. This is used when the task execution takes much time to return to the user
interface. but, if any error occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same
process instance then none are executed at the same time.

Auto store
variables

Automatically stores variables defined in the script during execution.

Note: Some languages, such as JavaScript do not support this feature.

Script Script that executes when the task executes.

Script
format

Format of the script that must be provided if a script is provided. Ex: .JavaScript

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the starts.Activity
End : Happens when the completes.Activity

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent
synchronously with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar
to the activity.Script Task

Is for
compensati
on

If an activity serves as compensation for another activity.

Multi-
instance

Multi
instance
type

Whether this activity is performed multiple times and how it is performed. The values are:

None: The activity is executed once only.
Parallel : The activity is executed many times with each instance occurring at the same time as others.
Sequential: The activity is executed many times, one instance following on from the previous one.

Cardinality
(Multi-
instance)

Number of times to perform the activity.

Collection
(Multi-
instance)

Process variable name which contains a collection for each item in this collection, an instance of this activity will be created.

Element
variable
(Multi-
instance)

Name of a process variable, which holds the current value of the collection in each activity instance.

Completion
condition
(Multi-
instance)

Multi-instance task ends when all instances end. we can provide an expression which can evaluate each time when an instance
ends, If that evaluates to true all remaining instances will be destroyed and the multi-instance task ends.

Mail task

A mail task provides automatic mail services which is used to enhance the business processes, Mail task send emails to multiple recipients. This task support
basic email features, like bcc lists, cc lists, and HTML content.

Graphical notation

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 32 of 72

Example

Attributes

Attribute Description

Id Unique identifier for this element.

Name Name for this element.

To Receiver email address we can specify multiple emails by a comma-separated list. Expression can be used when a fixed Receiver
value is provided. Same as user task, Identity store option is used to select known users or to refer people that were selected in form
fields before this email task.

From Email address of sender. If this is not given then the default configured system-wide setting This can be provided as an expression. from
 address will be used.

Subject Subject of the email. This can be an expression.

Cc The CC (Carbon Copy) email recipients. Multiple emails can be added using comma-separated list. This can be provided as an
.expression

Bcc The BCC (Blind Carbon Copy) email recipients. Multiple emails can be added using comma-separated list. This can be provided as an
.expression

Text Email text. If at receiver's end, HTML is not supported then email is displayed in text format (text-only alternative). Specify this and
HTML is to support email clients that do not support rich content.

Html Email content in HTML format. This allows for creation of rich formatting and usage of images.

Charset Character set for email. By default, UTF8 is used.

Asynchronous If an is made asynchronous then the is not executed as part of current action of user, Later this can be helpful if it is not activity activity
important to have the activity ready .immediately

Exclusive Making a as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process task
instance then none are executed at the same time.

Page 33 of 72

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously
with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the
 activity.Script Task

Multi-Instance
type

Whether this activity is performed multiple times and how it is performed. The values are:

None: The activity is executed once only.
Parallel : The activity is executed many times with each instance occurring at the same time as others.
Sequential: The activity is executed many times, one instance following on from the previous one.

Cardinality
(Multi-instance)

Number of times to perform the activity.

Collection
(Multi-instance)

Process variable name which contains a collection for each item in this collection, an instance of this activity will be created.

Element
variable (Multi-
instance)

Name of a process variable, which holds the current value of the collection in each activity instance.

Completion
condition (Multi-
instance)

Multi-instance task ends when all instances end. we can provide an expression which can evaluate each time when an instance ends,
If that evaluates to all remaining instances will be destroyed and the multi-instance task ends.true

Is for
compensation

If an activity serves as compensation for another activity.

To configure email in a workflow, add the following configuration in the file under workflow-default.properties C:\Program
:Files\Tomcat\webapps\ -task\WEB-INF - Copy\classesworkflow

workflow.mail.server.host=smtp.gmail.com
workflow.mail.server.port=587
workflow.mail.server.username=******
workflow.mail.server.password=*****
workflow.mail.server.use-tls=true

To trigger the mail task, create a process instance. An email is sent to the configured email address.

Manual task

Manual task is external to BPM engine. work that is performed by this task, Manual task is used to model work that Business process engine is not aware of
pass-through taskcan be performed by someone. Also there is no system. Manual task is treated as auser interface or , Where it automatically proceeds with

the process from the time execution arrives into it. It is a kind of human task, where some physical interactions are from a business use case and modeled
performs them without any involvement of business process execution.application or

Graphical notation

Example

The following example shows how a manual task, which is non-executable (Collect cash) is used to clarify a model.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 34 of 72

1.
2.
3.

Perform the following steps:

Create a process instance in workflow-task.
Complete the Enter payment information task by providing the outcome of the form as cash.
Complete the Collect Cash task.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchronous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the
process execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if
any error occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process
instance then none are executed at the same time.

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously
with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Scri
 activity.pt Task

Multi-
Instance
type

Whether this activity is performed multiple times and how it is performed. The values are:

None: The activity is executed once only.
Parallel : The activity is executed many times with each instance occurring at the same time as others.
Sequential: The activity is executed many times, one instance following on from the previous one.

Cardinality
(Multi-
instance)

Number of times to perform the activity.

Collection
(Multi-
instance)

Process variable name which contains a collection for each item in this collection, an instance of this activity will be created.

Element
variable
(Multi-
instance)

Name of a process variable, which holds the current value of the collection in each activity instance.

Completion
condition
(Multi-
instance)

Multi-instance task ends when all instances end. we can provide an expression which can evaluate each time when an instance ends, If
that evaluates to all remaining instances will be destroyed and the multi-instance task ends.true

Is for
compensation

If an activity serves as compensation for another activity.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 35 of 72

1.
2.
3.
4.
5.
6.

Receive task

A Receive Task waits for a certain message to arrive, When execution arrives at Receive Task, the state of process is committed to persistence storage, i.e.
the process will be in waiting state until a specific message is received by the engine, which then triggers continuation of process execution.

Graphical notation

Example

Perform the following steps:

Create process instance .
Complete first user task.
Trigger Executions: GET /runtime/executions API to get all executions by giving processInstanceId.
Note down value of executionId of receive task.
Trigger PUT /runtime/executions/{executionId} by passing executionId of receivetask and action as trigger .
Receive Task will be completed and second task will be released.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchronous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the
process execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if
any error occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process
instance then none are executed at the same time.

Page 36 of 72

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously
with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Scri
 activity.pt Task

Multi-
Instance
type

Whether this activity is performed multiple times and how it is performed. The values are:

None: The activity is executed once only.
Parallel : The activity is executed many times with each instance occurring at the same time as others.
Sequential: The activity is executed many times, one instance following on from the previous one.

Cardinality
(Multi-
instance)

Number of times to perform the activity.

Collection
(Multi-
instance)

Process variable name which contains a collection for each item in this collection, an instance of this activity will be created.

Element
variable
(Multi-
instance)

Name of a process variable, which holds the current value of the collection in each activity instance.

Completion
condition
(Multi-
instance)

Multi-instance task ends when all instances end. we can provide an expression which can evaluate each time when an instance ends, If
that evaluates to all remaining instances will be destroyed and the multi-instance task ends.true

Is for
compensation

If an activity serves as compensation for another activity.

Content task

Content task is used to model the request for content store artifact. Content task gives an abstraction for content store request and stores response in the
configured variable. Using content task user can perform CRUD operations on content store object.

Graphical notation

Example

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 37 of 72

Attributes

Group Attribute Description

General ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Authenticatio
n Details

Authentication Details configured to fetch OAuth2 token for content store HTTP request

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent
synchronously with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It
works similar to the activity.Script Task

Content store
request details

Category Content category (As of now limited to File and Folder)

Operation Type of the operation required(CRUD)

Category
type

Type definition of the given category(As of now limited to cms_file and cms_folder)

Response
variable
name

Process variable to store the response value

Folder id Folder identifier in the content store

Parent
folder id

Folder identifier in content store which is used to link it as parent folder

Folder name Name of the folder that needs to be created or updated in content store

Folder
description

Description of the folder that needs to be created or updated in content store

Acl id Access control list identifier which can be applied to any CMS object to manage the permits of an identity for that object.

File name Name of the file that needs to be created or updated in content store

File
description

Description of the file that needs to be created or updated in content store

File content Content as static value or from variable

Signature task

Signature task enables users to create documents and send them for signature. Using signature task user can create a document, send a document for
signature, delete a document, get documents and signature requests.

Graphical notation

Example

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 38 of 72

Attributes

Group Attribute Description

General ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Authenticatio
n Details

Authentication Details configured to fetch OAuth2 token for signature request.

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent
synchronously with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works
similar to the activity.Script Task

Operation Type of the operation required (create document, send for signature, delete document, get document or get signature).

Response
variable
name

Process variable to store the response value.

Document
request
details

File name Defaults to filename.

File name
with
extension

Filename including extension.

File content Base 64 or Plain document content.

Public URL Publicly accessible URL of document to be downloaded by OpenText Core Signature.

Link expire
duration

The number of days for which the download links in the Document Signed email will be valid. Afterwards, they will expire
and unauthenticated signers will be unable to download the document. ranges from [1 .. 30].

Auto expire
duration

Number of days after which a non finished document will be automatically expired. ranges from [1 .. 730].

Auto delete
duration

Number of days after which a finished document (signed/cancelled/declined) will be automatically deleted. ranges from [1
.. 730].

Document
URL

URL returned in response when a signature document is created.

Document ID UUID returned in response when a signature document is created.

Force delete If the document has an unfinished signature request, it will be cancelled. Then, the document will be deleted.

Signature
request

First name First name of signer.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 39 of 72

details
Last name Last name of signer.

Email Email of signer.

Redirect
URL

URL where signer needs to be redirected after document has been finished.

Password Password which signer needs to enter while performing any action on the document

Needs to
sign

The signer needs to action the document. selected by default.

Approve only The signer only needs to approve the document, not sign it.

Notify only The signer will only be notified of updates to the signature request. These users cannot perform any actions on the
document.

Subject Subject of signer email.

Message Message to signer email.

Signature ID UUID returned in response when a document is sent for signature.

Send Event Task

The send event task can be used to send events to any event registry. It can also wait to receive events by checking the "Set service task to be triggerable"
option similar to construct.Boundary event registry event

 Example

Attributes

Groups Attributes Description

General ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Boundaryeventregistryevent

Page 40 of 72

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent
synchronously with the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It
works similar to the activity.Script Task

Send
Event Detai
ls

Event Key Key of the deployed event definition.

Event name Name of the event definition.

Mapping to event
payload

The required process variables value can be mapped to the event payload.

Receive
Event
Details

Set service task
to be triggerable

Set this option to receive an event.

Trigger event key Key of the deployed event definition.

Trigger event
name

Name of the event definition.

Correlation
parameters

When multiple workflow process instances of the current process definition are running, then the incoming event
message can be matched against one of the running workflow process instances.

Mapping from
event payload

The required event payload values can be mapped to process variables.

Receive Event Task

Receive event task allows triggering a running process instance with an incoming event, along with correlation. This means when an appropriate event is
received through the event registry, the receive event task will be triggered and executed. When this happens, the current activity will be cancelled and the next
activity will be created. Please enable asynchronous execution option for subsequent activities in the process to handle and recover any execution errors as
deadletter jobs.

Graphical notation

Example

Attributes

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 41 of 72

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution
listeners

Active execution listeners will respond to the following events occurred on a activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with
the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Script
 activity.Task

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process instance
then none are executed at the same time.

Cancel
activity

Cancels the activity, if selected.

Event Key Key of the deployed event definition.

Event
name

Name of the event definition.

Mapping
from event
payload

The required event payload values can be mapped to process variables.

Correlation
parameters

When multiple process instances of the current process definition are running, then the incoming event message can be matched against
one of the running process instances.

Is for
compensati
on

If an activity serves as compensation for another activity.

Mapping from event payload :

Parameters can be configured to create required process variables from the event payload and can be used anywhere in the execution.

In above example three event parameters i.e document, event_type and status from event payload will be mapped to process variables document_var,
event_type_var and status_var.

Correlation parameters :

Parameters can be configured to match the values against event payload, we could match multiple correlation parameters, if all of the correlation parameters
are matched with the values of the received event payload then only the current activity will be cancelled and moves to the next activities.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 42 of 72

In above example three correlation parameters i.e status, event_type and processInstanceId needs to matched exactly against the status,
event_type and processInstanceId of the received event payload.

Here, we are using process instance id as a correlation parameter because when multiple process instances of current process definition are running, then the
incoming event payload message can be matched against the current process instance.

External Worker Task

The External Worker Task allows you to create jobs that should be acquired and executed by External Workers. An External Worker can acquire jobs over the
Workflow REST API. An External Worker, which can be implemented in any language, queries Workflow for jobs, executes them, and sends the result to
Workflow. The External Worker task is configured by setting the topic which the External Worker uses to acquire the jobs to execute. The external worker can
complete or fail the external job, when the retries of the external worker job become 0 then the job will be moved to the failed async job.

Graphical notation

Example

Attributes

Attribute Description

Id Unique identifier of the element within the process model.

Page 43 of 72

Name Name of the element.

Documentation Documentation of the element

Job topic The identifier is used to acquire the external worker jobs to execute

Asynchronous When this is enabled, the external task is started as an asynchronous job. The process state persists before this element executes,
and the process execution resumes asynchronously.

Exclusive Making a task exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process
instance then none are executed at the same time.

Execution Listeners Active execution listeners will respond to the process instance events that occurred on an Activity. Check Execution Listeners
Configuration

Multi-instance type Whether this activity is performed multiple times and how it is performed. The values are:

None: The is executed once only. activity
Parallel: The is many times with each instance occurring at the same time as others. activity executed
Sequential: The is many times, one instance following on from the previous one. activity executed

Cardinality (Multi-
instance)

The number of times to perform the activity.

Collection (Multi-
instance)

Process variable name which contains a collection for each item in this collection, an instance of this activity will be created.

Element variable
(Multi-instance)

Name of a process variable, which holds the current value of the collection in each activity instance.

Completion
condition (Multi-
instance)

The multi-instance task ends when all instances end. we can provide an expression that can evaluate each time when an instance
ends, If that evaluates to true all remaining instances will be destroyed and the multi-instance task ends.

Is for compensation If this activity serves as compensation for another activity.

Gateways

Flow of execution is controlled by gateway (or as described by BPMN 2.0 , the tokens of execution). A gateway can generate or consume tokens.

Exclusive Gateway

The XOR gateway is used to model a decision in the process. All outgoing sequence flows will be evaluated when execution arrives at this gateway in the order
which they are given. The first sequence flow conceptually whose condition evaluates to true or doesn’t have a condition set on the sequence flow is selected
for continuing the process.

Graphical notation

Example

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Executionlisteners
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Executionlisteners

Page 44 of 72

1.
2.

Perform the following steps:

Create a process instance in workflow-task.
Create a variable in workflow-admin and set the variable value to . Based on the variable value provided from admin, tasks will be true/false
released.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process instance
then none are executed at the same time.

Flow order The outgoing flows will be evaluated based on this order and will be stored in the XML representation of process. The outgoing flows order
can be managed by clicking on arrows icon.

Parallel gateway

Parallel gateway in a process. Thisis used to achieve concurrency is used to join multiple incoming paths of execution or fork into multiple paths of execution.

Graphical notation

Example

Page 45 of 72

After fetch details task, Receive payment and Ship order tasks will be released parallelly.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process instance
then none are executed at the same time.

Flow order The outgoing flows will be evaluated based on this order and will be stored in the XML representation of process. The outgoing flows order
can be managed by clicking on arrows icon.

Inclusive gateway

Inclusive gateway is a combination of a and an gateway. Similar to exclusive gateway, we can provide conditions and parallel exclusive outgoing sequence flow
it will evaluate them. The difference with exclusive gateway is that inclusive gateway takes more than one path for sequence flow, similar to parallel gateway.

Graphical notation

Example

Provide the following sequence flow condition:

Page 46 of 72

Depending on the condition and variable values, tasks are released.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process instance
then none are executed at the same time.

Flow order The outgoing flows will be evaluated based on this order and will be stored in the XML representation of process. The outgoing flows order
can be managed by clicking on arrows icon.

Event based gateway

Event-based gateway takes decisions based on events. Every outgoing sequence flow of event based gateway must be connected to an intermediate catching
event, For every outgoing sequence flow an event subscription will be created. When execution reaches event-based gateway, execution will be
suspended and it acts as a wait state.

Ordinary sequence flows differ from event-based gateway outgoing sequence flows. These are never actually executed. They allow the engine to determine the
events arriving at an event-based gateway that needs to subscribe. The following conditions apply:

An event-based gateway should definitely have two or more outgoing sequence flows.
An event-based gateway should only be connected to (Receive tasks are not supported after an event-based gateway).intermediateCatchEvent
An event-based gateway when connected to should have a single incoming sequence flow.intermediateCatchEvent

Graphical notation

Example

Page 47 of 72

Intermediate timer and signal catching events are configured after the event-based gateway.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Exclusive Making a task as exclusive is useful to solve race conditions, When there are several asynchronous elements of the same process instance
then none are executed at the same time.

Flow order The outgoing flows will be evaluated based on this order and will be stored in the XML representation of process. The outgoing flows order
can be managed by clicking on arrows icon.

Intermediate throwing events

Intermediate throwing none event

Intermediate throwing event The following model shows a simple example of an intermediate throwing is often used to indicate a state achieved in the process.
none event.

Graphical notation

Example

The business process engine itself does not do anything in this case; it just passes through.

Attributes

Page 48 of 72

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with
the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Script
 activity.Task

Signal intermediate throwing event

Signal intermediate throwing event throws a signal event for a specified signal.

Signal is broadcast to all active catching signal events. Signals can be sent asynchronously or synchronously.

In default configuration, the signal will be delivered . The process instance that is throwing signals will wait until all catching process synchronously
instances receives signal. The signals will be received in same order as the throwing process instance. If one of the received instances produces an
error or an exception then all the instances involved will fail.
A signal can also be delivered . In this case ,it is determined which catching signal events are active at the time when throwing signal asynchronously
event is reached. For each active catching signal event, an asynchronous notification message (Job) will be delivered and stored by the JobExecutor.

Graphical notation

Example

Use the signal thrown in the intermediate throwing event in the defined signal catching event.

Signal catching events will catch the signal thrown by signal throwing event and the configured flow will be started.

Attributes

Attribute

Description

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 49 of 72

1.
2.
3.
4.

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with
the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Script
 activity.Task

Signal
reference

Name of the signal.

Intermediate escalation throwing event

A named escalation will be thrown, when execution reaches at intermediate escalation throwing event. This escalation can be caught by an event sub-process
with an escalation start event or an escalation boundary event, which has the none or same escalation code.

Graphical notation

Example

The following example shows how to configure an escalation throwing event and the corresponding escalation start event defined in the event sub-process.

Define escalation definitions in the model and select using Escalation reference while configuring the throwing or start escalation event.

The model execution is as follows:

A process instance is created.
Complete task 'Approve new policy conditions'.
If output of the gateway is yes, intermediate escalation throwing event will be executed.
An escalation throwing event throws the escalation. Intermediate escalation catching event defined in the event sub-process, catches the escalation
reference and handle escalation task will be released.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 50 of 72

1.
2.
3.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When this is enabled, the task is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This is used when the task execution takes much time to return to the user interface. but, if any error
occurs before the following wait state, there won't be direct user feedback.

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with
the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Script
 activity.Task

Escalation
reference

Name of the escalation.

Boundary events

Timer boundary event

Timer boundary event behaves as alarm clock and stopwatch. Once execution reaches at an activity to which this boundary event is attached, a timer starts.
The activity is interrupted after a specified interval and the outgoing sequence flow of the boundary event is followed.

Graphical notation

Example

The model execution is as follows:

A process instance is created.
When an execution arrives at the activity where the boundary event is attached, a timer starts.
When the timer fires (for example, after a specified interval), the activity is interrupted and the outgoing sequence flow of the boundary event is
followed.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask

Page 51 of 72

Execution
listeners

Active execution listeners will respond to the following events occurred on a Activity:

Start: Happens when the Activity starts.
End : Happens when the Activity completes.

A mail notification can be configured to be sent when a specific listener event is triggered. On enabling it, a mail is sent synchronously with
the listener event execution. It works similar to the activity.Mail Task

A custom script can also be configured to be executed synchronously when a specific listener event is triggered. It works similar to the Scri
 activity.pt Task

Time cycle
(e.g. R3
/PT10H)

Defines a repeating time interval, This is used to send multiple reminders for a delayed user task or to start the process periodically. Time
cycle component can be in repeating time duration format as defined by the ISO 8601 standard. example, three repeating time intervals,
lasting 10 hours each.

Time date
in ISO-8601

Specifies a fixed date (ISO 8601 format) when the trigger will fire.

Time
duration (e.
g. PT5M)

Specifies how long the timer must run before it is fired. A timeDuration can be defined as a sub-component of timerEventDefinition
. The ISO 8601 format is used as required by the BPMN 2.0 specification.

Cancel
activity

Cancels the activity, if selected.

Error boundary event

Boundary error event catches the errors that are thrown within the scope of the task to which it is attached. Defining a boundary error event makes more sense
on or because a sub-process creates a scope for all tasks inside the sub-process. E hese a call activity an embedded sub-process rror end events will throw t
errors. Such an error propagates to its parent scopes upwards until a scope is found on which the defined matches the error event boundary error event
definition.

When an error event is caught, the task to which the boundary event is attached will be destroyed, along with all current executions therein (for example,
concurrent activities). Execution continues through the outgoing sequence flow of the boundary event.nested sub-processes and

Graphical notation

Example

Select the error reference value in both the error boundary event and error end event.

https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Mailtask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
https://confluence.opentext.com/display/PDi/Workflow+modeler+constructs+and+properties#Workflowmodelerconstructsandproperties-Scripttask
http://en.wikipedia.org/wiki/ISO_8601#Dates
http://en.wikipedia.org/wiki/ISO_8601#Durations

Page 52 of 72

1.
2.
3.

4.

In the error end event, provide the sequence flow condition as .${enoughinformation == false}

The model execution is as follows:

A process instance is created.
The variable value is set to .detailsMissing true
Complete Enter order details task.
As value of is set to , execution ends and the error is caught.detailsMissing true
The boundary error event catches the error and Provide additional details task will be released.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Error reference Name of the error.

Signal boundary event

When an execution arrives to the task to which the signal boundary event is attached, the signal boundary event catches signals with the proper name.
Contrary to other events, such as the error boundary event, a signal boundary event does not only catch signal events thrown from the scope it is attached to.
A signal event has a global scope (broadcast semantics), meaning that the signal can be thrown from any place, even from a different process instance.

Graphical notation

The following model shows how to configure the signal boundary event and runtime execution.

Create a new signal reference and select in signal throwing and boundary events.

The model execution is as follows:

A process instance is created.
Task1 completes.
An intermediate signal throw event catches the signal and the boundary signal event, which is configured at Task2 catches the signal, and the End
task is released.
Task2 and Task3 are skipped after the boundary signal event.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Signal reference Name of the signal.

Page 53 of 72

1.
2.
3.
4.
5.

6.

Cancel activity Cancels the activity, if selected.

Escalation boundary event

Escalation boundary event catches escalations that are thrown within the scope of the task on which it is defined. It can only be attached to a call activity or an
embedded sub-process because only an escalation end event or an escalation intermediate throw event can thrown an escalation. When an escalation event
from a call activity triggers the boundary event, the output variables defined on the call activity are passed to the scope of the boundary event.

Graphical notation

Example

The following BPMN model shows how to configure an escalation boundary event.

Create the escalation definition and use the value while adding the escalation throwing and boundary escalation events.

The model execution is as follows:

A process instance is created.
The Enter order details task completes.
Complete Review order details task.
At the gateway, provide a Boolean variable with the escalation value .true
The escalation throw event throws an escalation, the escalation boundary event at the sub-process catches the escalation, and the Provide additional
details
 task releases.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Escalation reference Name of the escalation.

Cancel and compensation boundary events

Cancel event on the boundary of a transaction sub-process is triggered when a transaction is canceled. When it triggers, at first it will interrupts all executions
that are active in current scope. Next, it starts compensation of all active compensation boundary events in the scope of the transaction. Compensation is
performed synchronously, that means the boundary event waits until compensation is complete before leaving the transaction. When compensation is
complete, the transaction sub-process is left through the outgoing sequence flows of the cancel boundary event.

Note: The cancel boundary event must be configured with the cancel end event and the boundary compensation event. User task is not supported for
configuring the compensation event. Therefore, you can use the HTTP task while adding a compensation event.

Graphical notation

Page 54 of 72

 Boundary cancel event

 Boundary compensation event

Example

The following example shows how to use cancel and compensation boundary events together in a transaction sub-process.

Following are the configurations.

Check Is: A transaction sub-process check box.
Check Is for compensation: A check box for an HTTP task, which is added at the boundary compensation event.

The model execution is as follows:

A process instance is created.
The Complete charge credit card task completes.
Provide a condition at the gateway such that the cancel end event must trigger: (${paid == false})
Compensation occurs after the cancel end event.
The boundary cancel event executes and the Send error details task releases.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Boundary message event

Page 55 of 72

1.
2.
3.
4.
5.

6.

Boundary message event when attached to a task, will be listening for named message. When this named message is caught depending on the configuration
 following two things can happen:of the boundary event

Interrupting boundary event: The task is interrupted and the sequence flow going out of the event will be followed.
Non-interrupting boundary event: One token stays in the task and an additional token is created which follows the sequence flow going out of the
event.

Graphical notation

Example

Perform the following steps:

Create process instance in workflow-task.
Complete Process payment task.
When the execution arrives at Fetch items task, Through swagger note down process instance id.
To get the required process instance executionId, use the rest API 'POST /query/executions
To trigger the message event on the given process instance use the rest API '/runtime/executions/{executionId}', pass the message name in the
request body.
On receiving message, Message boundary event will be activated and Cancel order task will be released.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Message reference Name of the message.

Cancel activity Cancels the activity, if selected.

Boundary event registry event

Boundary event registry event allows triggering a running process instance with an incoming event, along with correlation and tenant detection support. This
means when an appropriate event is received through event registry, the boundary message will be triggered and executed. When this happens, the current
activity will be cancelled and the next activity will be created. Any number of Boundary event registry events can be attached to user and receive activities.

Please enable asynchronous execution option for subsequent activities in the process to handle and recover any execution errors as deadletter jobs.

Graphical notation

Page 56 of 72

Example

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Message reference Name of the message.

Cancel activity Cancels the activity, if selected.

Event Key Key of the deployed event definition.

Event name Name of the event definition.

Mapping from event
payload

The required event payload values can be mapped to process variables.

Correlation
parameters

When multiple process instances of current process definition are running, then the incoming event message can be matched
against one of the running process instance.

Mapping from event payload :

Parameters can be configured to create required process variables from the event payload and can be used anywhere in the execution.

Page 57 of 72

In above example three event parameters i.e document, event_type and status from event payload will be mapped to process variables document_var,
event_type_var and status_var.

Correlation parameters :

Parameters can be configured to match the values against event payload, we could match multiple correlation parameters, if all of the correlation parameters
are matched with the values of the received event payload then only the current activity will be cancelled and moves to the next activities.

In above example three correlation parameters i.e status, event_type and processInstanceId needs to matched exactly against the status,
event_type and processInstanceId of the received event payload.

Here, we are using process instance id as a correlation parameter because when multiple process instances of current process definition are running, then the
incoming event payload message can be matched against the current process instance.

End Events

An end event signifies the end of a path in a process or sub-process. An end event is always throwing a result. When process execution arrives at an end
event, a result is thrown. The type of result is depicted by the inner black icon of the event. In the XML representation, the type is provided by the declaration of
a sub-element.

None end event

A ‘none’ end event means that the result thrown when the event is reached is unspecified. As such, the business process engine will not perform anything
besides ending the current path of execution.

Graphical notation

Page 58 of 72

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

End error event

When process execution arrives at an error end event, the current path of execution ends and an error is thrown. This error can be caught by a matching
. If no matching boundary error event is found, an exception is thrown.intermediate boundary error event

Graphical notation

Example

An end error event must be associated with an intermediate error catching event or boundary error event.

Following are the configurations.

Check Is: A transaction sub-process check box.
Check Is for compensation: A check box for an HTTP task, which is added at the boundary compensation event.

The model execution is as follows:

A process instance is created.
The Complete charge credit card task completes.
Provide a condition at the gateway such that the cancel end event must trigger: (${paid == false})
Compensation occurs after the cancel end event.
The boundary cancel event executes and the Send error details task releases.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

https://flowable.org/docs/userguide/index.html#bpmnBoundaryErrorEvent
https://flowable.org/docs/userguide/index.html#bpmnBoundaryErrorEvent

Page 59 of 72

Execution listeners Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

Error reference Name of the error.

End escalation event

When process execution arrives at an escalation end event, the current path of execution ends and a named escalation is thrown. This escalation can be
caught by an escalation boundary event or an event sub-process with an escalation start event.

Graphical notation

Example

An escalation end event must be configured with an escalation start event/boundary escalation event or escalation start event.

When Review application task completes, an escalation end event throws an escalation. The escalation start event catches the escalation and Handle
escalation task releases.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity.

Escalation reference Name of the escalation.

End cancel event

The cancel end event can only be used in combination with a . When the cancel end event is reached, a cancel event is thrown, which transaction sub-process
must be caught by a cancel boundary event. The cancel boundary event cancels the transaction and triggers compensation.

Graphical notation

Example

Page 60 of 72

Configuring and using the cancel event is explained in the Cancel boundary event.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

End terminate event

End terminate events are mostly used with parallel gateways. While a normal (untyped) end event indicates that a single process sequence ends, the terminate
end event ends the whole process and thereby, ends every activity that may be running at that time.

Graphical notation

Example

When the upper end event is reached, only the first topmost sequence flow ends without considering the state of the other sequence flow. When the bottom
activity ends, for example, with an outcome, which results in the fact that the upper activity is not needed anymore, the terminate end event ends both the
parallel process flows, regardless of whether the top activity is still running.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Execution listeners Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

Terminate all Terminates the process instance, if enabled.

Swimlanes

Swimlanes are rectangular boxes that represent participants of a business process. A swimlane may contain flow objects that are performed by that lane
(participant). Swimlanes may be arranged horizontally or vertically. They are semantically the same but different in representation. For horizontal swimlanes,
the process flows from left to right, while processes in vertical swimlanes flow from top to bottom.

Page 61 of 72

There are two kinds of swimlanes: pools and lanes.

Pool

Pools represent participants in a business process. It can be a specific entity (for example, department) or a role (assistant manager, doctor, for example,
student, or vendor). In a pool, there are flow elements, which represent the works that the pool must perform in the process being modeled.

 Graphical notation

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Process identifier Unique identifier of the process definition.

is executable Whether or not the process is executable.

Lane

Lanes are sub-partitions of pools. For example, when you have a pool Department, you may have Department Head and General Clerk as lanes. Same as
pools, you can use lanes to represent specific entities or roles who are involved in the process.

Graphical notation

Example (pool and lane)

The model shows the process of purchasing a book from a customer online. In this model, there is a pool (Sell a book) consisting of three lanes (Store, Sales,
and Customer).

Page 62 of 72

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Artifacts

Artifacts allow you to visually represent objects outside the actual process. Artifacts can represent data or notes that describe the process, or they can be used
to organize tasks or processes.

Text annotation

Annotations allow you to describe the business process and flow objects in more detail. Add annotations to make your BPMN process more readable and
further increase understanding of your process.

Graphical notation

Example

The annotation for task A describes that task A has two instances and they are executed in parallel.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Page 63 of 72

Text Text for the text annotation.

Structural

Sub-process

A sub-process is an activity that contains other activities, gateways, and events, which in itself form a process that is part of the bigger process. A sub-
process is completely defined inside a parent process. A sub-process can only have one none start event. No other start event types are allowed. A sub-
process must have at least one end event.

: The BPMN 2.0 specification allows the omission of the start and end events in a sub-process.Note

Graphical notation

Example

The following model shows a process with a subtask (Task B). After Task A completes, Task B initiates, and after completion of Task B, Task C starts. One of
the main reasons to use a sub-process is to define a scope for a specific event.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When enabled, the activity is started as an asynchronous job. The process state persists before this element executes. Then, the process execution resumes asynchroneously. This can be used when the execution of an activity takes a long time to return the user interface. However,
if an error occurs before the following wait state, there is no direct user feedback.

Exclusive Defines the activity as exclusive.

Execution
listeners

Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

Page 64 of 72

Multi-
Instance
type

Whether this task is performed multiple times and how it is performed. The possible values are:

None: The task is performed once only.
Parallel : The task is performed multiple times with each instance potentially occurring at the same time as the others.
Sequential: The task is performed multiple times, one instance following on from the previous one.

Cardinality
(Multi-
instance)

Number of times to perform the task.

Collection
(Multi-
instance)

Name of a process variable, which is a collection. For each item in the collection, an instance of this task is created.

Element
variable
(Multi-
instance)

Process variable name, which contains the current value of the collection in each task instance.

Completion
condition
(Multi-
instance)

A multi-instance activity normally ends when all instances end. Specify an expression to evaluate each time an instance ends. If the expression evaluates to , all remaining instances are destroyed and the multi-instance activity ends.true

Is a
transaction
subprocess

Whether this sub-process is of type transaction.

Page 65 of 72

Data
Objects

Definition of data object properties.

Encrypt data for privacy :

Use this option to encrypt the data used in data objects. By default, data objects are not selected for encryption.

Event sub-process

An event sub-process is triggered by an event. It can be added at the process level or any sub-process level. The event used to trigger an event sub-process is
cess might be triggered using configured using a start event, implying that none start events are not supported for event sub-processes. An event sub-pro

events, such as message events, error events, signal events, timer events, or compensation events. An event sub-process must not have any incoming or
outgoing sequence flows because an event sub-process is triggered by an event.

Graphical notation

Example

The following model shows a job application review process. In the review task, the process checks for the required information, and if the information is not
sufficient, an error event is thrown and the error event in the event sub-process is triggered.

Attributes

Page 66 of 72

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When enabled, the activity is started as an asynchronous job. The process state persists before this element executes, and the process
execution resumes asynchronously. This can be used when the execution of an activity takes a long time to return the user interface.
However, if an error occurs before the following wait state, there is no direct user feedback.

Execution
listeners

Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

Exclusive Defines the activity as exclusive.

Call activity

BPMN 2.0 makes a distinction between a regular sub-process, often also called embedded sub-process, and the call activity, which looks very similar. Both call
a sub-process when the process execution arrives at the activity.

The difference is that the call activity references a process that is external to the process definition, whereas the sub-process is embedded within the original
process definition. The main use case for the call activity is to have a reusable process definition that can be called from multiple other process definitions.

When process execution arrives at the call activity, a new execution is created that is a sub-execution of the execution that arrived at the call activity. This sub-
execution is then used to execute the sub-process, potentially creating parallel child executions as within a regular process. The super-execution waits until the
sub-process ends and continues with the original process afterward.

Graphical notation

Example

A sub-process model:

The main process model utilizing call activity:

Page 67 of 72

In the call activity properties, select the key value for the Called element type and provide the sub-process key name in the Called element.

Attributes

Attribute Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Start the
referenced
process from the
same deployment

References the referenced process from the same application deployment, if set to Set to to always use the newest true. false
process definition.

Called element
type

Key or ID of the deployed process definition to start the referenced process.

Called element Called element value.

In parameters Optional input parameter map. Allows the mapping of parameters and variables, which are then available in the newly created
process.

Out parameters Optional output parameter map. Allows the mapping of parameters and variables to the original case work item when the human
task’s work item completes.

Inherit variables in
subprocess

Inheritance of parent process variables in the sub-process.

Process instance
name

Expression that resolves into the name of the child process instance.

ID variable Instance ID of the started instance is store, if set.

Inherit business
key

Inheritance of the business key from the parent process.

Business key
expression

Business key of the newly created process instance, which can be an expression.

Use local scope
for out parameters

Uses local variable scope for out parameters.

Complete
asynchronously

Executes the completion of the call activity in an exclusive asynchronous job. This is useful in combination with parallel multi-
instance.

Page 68 of 72

Fallback to default
tenant

Indicates that the process instance is created with the default tenant if it is not available on the current tenant, if the application is
running in a multi-tenant setup.

Execution listeners Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

Asynchronous When enabled, the activity is started as an asynchronous job. The process state persists before this element executes, and the
process execution resumes asynchronously. This can be used when the execution of an activity takes a long time to return the user
interface. However, if an error occurs before the following wait state, there is no direct user feedback.

Is for
compensation

Whether the activity can serve as a compensation for another activity.

Exclusive Defines the activity as exclusive.

Multi-instance type Whether this task is performed multiple times and how it is performed. The possible values are:

None: The task is performed once only.
Parallel : The task is performed multiple times with each instance potentially occurring at the same time as the others.
Sequential: The task is performed multiple times, one instance following on from the previous one.

Cardinality (Multi-
instance)

Number of times to perform the task.

Collection (Multi-
instance)

Name of a process variable, which is a collection. For each item in the collection, an instance of this task is created.

Element variable
(Multi-instance)

Process variable name, which contains the current value of the collection in each task instance.

Completion
condition (Multi-
instance)

A multi-instance activity normally ends when all instances end. Specify an expression to evaluate each time an instance ends. If the
expression evaluates to , all remaining instances are destroyed and the multi-instance activity ends.true

Collapsed sub-process

collapsedMany modeling tools allow sub-processes to be , hiding all the details of the sub-process, resulting in a high-level, end-to-end overview of the
collapsedbusiness process. A sub-process is visualized as a typical activity (a rounded rectangle). If the sub-process is , only the name and a plus-sign are

displayed, providing a high-level overview of the process.

Graphical notation

Example

Page 69 of 72

You can switch between the main process and sub-process using the process navigator in the modeler.

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Asynchron
ous

When enabled, the activity is started as an asynchronous job. The process state persists before this element executes, and the process execution resumes asynchronously. This can be used when the execution of an activity takes a long time to return the user interface. However, if
an error occurs before the following wait state, there is no direct user feedback.

Execution
listeners

Active execution listeners of the activity. This lets you react to the following events:

Start: Occurs when the activity starts.
End: Occurs when the activity completes.

Multi-
Instance
type

Whether this task is performed multiple times and how it is performed. The possible values are:

None: The task is performed once only.
Parallel : The task is performed multiple times with each instance potentially occurring at the same time as the others.
Sequential: The task is performed multiple times, one instance following on from the previous one.

Cardinality
(Multi-
instance)

Number of times to perform the task.

Collection
(Multi-
instance)

Name of a process variable, which is a collection. For each item in the collection, an instance of this task is created.

Element
variable
(Multi-
instance)

Process variable name, which contains the current value of the collection in each task instance.

Completion
condition
(Multi-
instance)

A multi-instance activity normally ends when all instances end. Specify an expression to evaluate each time an instance ends. If the expression evaluates to true, all remaining instances are destroyed and the multi-instance activity ends.

Is a
transaction
subprocess

Whether this sub process is a type of transaction.

Page 70 of 72

Data
Objects

Defination of data objects properties.

Encrypt data for privacy :

Use this option to encrypt the data used in data objects. By default, data objects are not selected for encryption.

Exclusive Defines the activity as exclusive.

Adhoc sub-process

Use the ad-hoc subprocess to mark a segment in which the contained activities can be:

Executed in any order,
Executed several times, or
Skipped.

Graphical notation

Example

Page 71 of 72

When a process instance is started from this process definition, an ad-hoc subprocess execution is created in the workflow engine and it doesn't
execute the child activities automatically.

To execute the activities in the ad-hoc process, Execute workflow rest API '/process-instances/adhoc-subprocesses/{adhocSubprocessId}/activities'
Example request body:

 {
 "activityIds": [
 "GetClaimInformation", "GetPreviousClaimDetails"
]
 }

 To execute this API, It requires ad-hoc subprocess execution Id, activity Id's in the ad-hoc subprocess.

- To get the Id of ad-hoc subprocesses for a process instance, Execute workflow rest API '/process-instances/{processInstanceId}/adhoc-
subprocesses'.

- To get the List of enabled activities for ad-hoc subprocess, Execute workflow rest API '/process-instances/adhoc-subprocesses/{adhocSubprocessId}
/activities'.

Without defining a 'completion condition' attribute, the Workflow Engine will not end the ad-hoc subprocess execution automatically. To complete an
ad-hoc subprocess, Execute workflow rest API '/process-instances/adhoc-subprocesses/{adhocSubprocessId}' when there are no active child
executions (for example user tasks) anymore.
Example request body:

{
 "action": "complete"
}

Attributes

Attribute

Description

ID Unique identifier of the element within the process model.

Name Name of the element. This is the name displayed in the diagram.

Page 72 of 72

Completion
condition

Specify an expression to evaluate each time while completing a child execution. If the expression evaluates to true and if the Cancel
remaining instances attribute is set to true then the ad-hoc subprocess will be completed automatically. If the expression evaluates to true
and if the cancel remaining instances attribute set to false then the ad-hoc subprocess will be completed only when there are no active child

.executions

Without defining a completion condition expression the workflow engine will not end the ad-hoc subprocess execution automatically. Need
ad-hoc subprocess complete API to complete the sub-process when there are no active child executions (for example user tasks) anymore.

Ordering
Parallel: We can execute multiple enabled activities at the same time. By default, this attribute set to Parallel.
Sequential: This means that only one of the activity can be executed at the same time. The workflow engine will not allow a second
activity to be executed when the first activity hasn't been completed yet.

Cancel
remaining
instances

It's possible to define whether the ad-hoc sub process should cancel any remaining executions when the completion condition evaluates to
true. By default it is true, the Workflow Engine will cancel all other running executions, but when setting this attribute to false, the ad-hoc
sub process will not complete before all executions have been ended.

	Workflow modeler constructs and properties

