Zombie.js

Browser

browser.assert

Methods for making assertions against the browser, such as
browser.assert.element(".foo").

See Assertions for detailed discussion.

browser.console

Provides access to the browser console (same as window.conso'le).

browser.referer

You can use this to set the HTTP Referer header.

browser.resources

Access to history of retrieved resources. Also provides methods for retrieving resources
and managing the resource pipeline. When things are not going your way, try calling
browser.resources.dump().

See Resources for detailed discussion.

browser.tabs

Array of all open tabs (windows). Allows you to operate on more than one open window
at a time.

See Tabs for detailed discussion.
browser.eventLoop

browser.errors

Extending The Browser

Page 1



Browser.extend (function(browser) {
browser.on("console", function(level, message) {
logger.log(message) ;

1)

browser.on("log", function(level, message) {
logger.log(message) ;

1)

1)

Tabs

Just like your favorite Web browser, Zombie manages multiple open windows as tabs. New
browsers start without any open tabs. As you visit the first page, Zombie will open a tab for
it.

All operations against the browser object operate on the currently active tab (window)

and most of the time you only need to interact with that one tab. You can access it directly
via browser .window.

Web pages can open additional tabs using the window.open method, or whenever a link

or form specifies a target (e.g. target=_blank or target=window-name). You can also
open additional tabs by calling browser .open. To close the currently active tab, close the
window itself.

You can access all open tabs from browser . tabs. This property is an associative array,
you can access each tab by its index number, and iterate over all open tabs using functions
like forEach and map.

It a window was opened with a name, you can also access it by its name. Since names may
conflict with reserved properties/methods, you may need to use browser . tabs. find.

The value of a tab is the currently active window. That window changes when you navigate
forwards and backwards in history. For example, if you visited the URL "/foo" and then
the URL "/bat", the first tab (browser . tabs[0]) would be a window with the document
from "/bat". If you then navigate back in history, the first tab would be the window with
the document "/foo".

The following operations are used for managing tabs:

browser.close(window)

Closes the tab with the given window.

browser.close()

Closes the currently open tab.

browser.tabs

Returns an array of all open tabs.

Page 2



browser.tabs[number]

Returns the tab with that index numbet.
browser.tabs[string]

browser.tabs.find(string)

Returns the tab with that name.

browser.tabs.closeAll()

Closes all tabs.

browser.tabs.current
This is a read /write property. It returns the currently active tab.

Can also be used to change the currently active tabe. You can set it to a window (e.g; as
currently returned from browser.current), a window name or the tab index number.

browser.tabs.dump(output)

Dump a list of all open tabs to standard output, or the output stream.

browser.tabs.index

Returns the index of the currently active tab.

browser.tabs.length

Returns the number of currently opened tabs.

browser.open(url: "http://example.com")

Opens and returns a new tab. Supported options are: - name - Window name. - ur | - Load
document from this URL.

browser.window

Returns the currently active window, same as browser . tabs.current.

Assertions

To make life easier, Zombie introduces a set of convenience assertions that you can access
directly from the browser object. For example, to check that a page loaded successfuly:

browser.assert.success();
browser.assert.text("title", "My Awesome Site");
browser.assert.element("#main");

Page 3



These assertions are available from the browser object since they operate on a particular
browser instance -- generally dependent on the currently open window, or document
loaded in that window.

Many assertions require an element/elements as the first argument, for example, to
compare the text content (assert. text), or attribute value (assert.attribute). You
can pass one of the following values:

e An HTML element or an array of HTML elements
* A CSS selector string (e.g. "h2", ".book", "#first-name")

Many assertions take an expected value and compare it against the actual value. For
example, assert.text compares the expected value against the text contents of one or
more strings. The expected value can be one of:

* A JavaScript primitive value (string, number)

* undefined or null are used to assert the lack of value

¢ A regular expression

* A function that is called with the actual value and returns true if the assertion is true
¢ Any other object will be matched using assert.deepEqual

Note that in some cases the DOM specification indicates that lack of value is an empty
string, not null/undefined.

All assertions take an optional last argument that is the message to show if the assertion
fails. Better yet, use a testing framework like Mocha that has good diff support and don't
worry about these messages.

Available Assertions

The following assertions are available:

assert.attribute(selection, name, expected, message)
Asserts the named attribute of the selected element(s) has the expected value.

Fails if no element found.

assert.className(selection, className, message)

Asserts that selected element(s) has that and only that class name. May also be space-
separated list of class names.

Fails if no element found.

assert.cookie(name, expected, message)

Asserts that a cookie with the given name has the expected value.

assert.element(selection, message)

Page 4


http://visionmedia.github.com/mocha/

Asserts that one element matching selection exists.

Fails if no element or more than one matching element are found.

assert.elements(selection, count, message)

Asserts how many elements exist in the selection.

The argument count can be a number, or an object with the following properties:
e atlLeast - Expecting to find at least that many elements
* atMost - Expecting to find at most that many elements

* exactly - Expecting to find exactly that many elements

assert.evaluate(expression, expected, message)
Evaluates the JavaScript expression in the context of the currently open window.
With one argument, asserts that the value is equal to true.

With two/three arguments, asserts that the returned value matches the expected value.

assert.global(name, expected, message)

Asserts that the global (window) property has the expected value.

assert.hasClass(selection, className, message)

Asserts that selected element(s) have the expected class name. Elements may have other
class names (unlike assert.className).

Fails if no element found.

assert.hasFocus(selection, message)
Asserts that selected element has the focus.
If the first argument isnu L1, asserts that no element has the focus.

Otherwise, fails if element not found, or if more than one element found.

assert.input(selection, expected, message)

Asserts that selected input field(s) (input, textarea, select etc) have the expected

value.

Fails if no element found.

assert.hasNoClass(selection, className, message)

Asserts that selected element(s) does not have the expected class name. Elements may have
other class names (unlike assert.className).

Fails if no element found.

Page 5



assert.prompted(messageShown, message)

Asserts the browser prompted with a given message.

assert.redirected(message)

Asserts the browser was redirected when retrieving the current page.

assert.success(message)

Asserts the current page loaded successfully (status code 2xx or 3xx).

assert.status(code, message)

Asserts the current page loaded with the expected status code.

assert.style(selection, style, expected, message)
Asserts that selected element(s) have the expected value for the named style property. For
example:

browser.assert.style(".navigation", "opacity", 0.5)

Fails if no element found.

assert.text(selection, expected, message)

Asserts that selected element(s) have the expected text content. For example:
browser.assert.text("title", "My Awesome Page')
Fails if no element found.

assert.url(url, message)
Asserts the current page has the expected URL.
The expected URL can be one of:
* The full URL as a string
* A regular expression
* A function, called with the URL and returns true if the assertion is true
* An object, in which case individual properties are matched against the URL

For example:

browser.assert.url("http://localhost/foo/bar")
browser.assert.url({ pathame: "/foo/bar" });
browser.assert.url({ query: { name: "joedoe" } });

Roll Your Own Assertions

Page 6



Not seeing an assertion you want? You can add your own assertions to the prototype of

Browser .Assert.

For example:

// Asserts the browser has the expected number of open tabs.
Browser.Assert.prototype.openTabs = function(expected, message) {
assert.equal(this.browser.tabs.length, expected, message);

s
Or application specific:

// Asserts which links 1is highlighted in the navigation bar

Browser.Assert.navigationOn = function(linkText) {
this.assert.element(".navigation-bar");
this.assert.text(".navigation-bar a.highlighted", linkText);

s

Events

Each browser instance is an EventEmitter, and will emit a variety of events you can

listen to.
Some things you can do with events:

* Trace what the browser is doing, e.g. log every page loaded, every DOM event emitted,

every timeout fired

Wiait for something to happen, e.g. form submitted, link clicked, input element getting

the focus

Strip out code from HTML pages, e.g remove analytics code when running tests
¢ Add event listeners to the page before any JavaScript executes

* Mess with the browser, e.g. modify loaded resources, capture and change DOM events

console (level, messsage)

Emitted whenever a message is printed to the console (console. log, console.error,

console. trace, etc).
The first argument is the logging level, and the second argument is the message.

The logging levels are: debug, error, info, log, trace and warn.

active (window)

Emitted when this window becomes the active window.

closed (window)

Emitted when this window is closed.

Page 7



done ()

Emitted when the event loop goes empty.

evaluated (code, result, filename)
Emitted after JavaScript code is evaluated.

The first argument is the JavaScript function or code (string). The second argument is the
result. The third argument is the filename.

event (event, target)

Emitted whenever a DOM event is fired on the target element, document or window.

focus (element)

Emitted whenever an element receives the focus.

inactive (window)

Emitted when this window is no longer the active window.

interval (function, interval)

Emitted whenever an interval (setInterval) is fired.

The first argument is the function or code to evaluate, the second argument is the interval
in milliseconds.

link (url, target)

Emitted when a link is clicked.

The first argument is the URL of the new location, the second argument identifies the
target window (_self, _blank, window name, etc).

loaded (document)

Emitted when a document has been loaded into a window or frame.

This event is emitted after the HTML is parsed, and some scripts executed.

loading (document)
Emitted when a document is about to be loaded into a window or frame.

This event is emitted when the document is still empty, before parsing any HTML.

opened (window)

Emitted when a new window is opened.

redirect (request, response)

Emitted when following a redirect.
Page 8



The first argument is the request, the second argument is the response that caused the

redirect. See Resources for more details.

The URL of the new resource to retrieve is given byresponse.url.

request (request)
Emitted before making a request to retrieve a resource.

The first argument is the request object. See Resources for more details.

response (request, response)

Emitted after receiving the response (excluding redirects).

The first argument is the request object, the second argument is the response object. See
Resources for more details.

submit (url, target)

Emitted whenever a form is submitted.

The first argument is the URL of the new location, the second argument identifies the
target window (_self, _blank, window name, etc).

timeout (function, delay)

Emitted whenever a timeout (setTimeout) is fired.

The first argument is the function or code to evaluate, the second argument is the delay in
milliseconds.

Resources

Zombie can retrieve with resources - HTML pages, scripts, XHR requests - over HTTP,
HTTPS and from the file system.

Most work involving resources is done behind the scenes, but there are few notable
features that you'll want to know about. Specifically, if you need to do any of the following:

Page 9



* Inspect the history of retrieved resources, useful for troubleshooting issues related to

resource loading
e Simulate a failed server

¢ Change the order in which resources are retrieved, or otherwise introduce delays to
simulate a real world network

* Mock responses from servers you don't have access to, or don't want to access from test

environment
* Request resources directly, but have Zombie handle cookies, authentication, etc

¢ Implement new mechanism for retrieving resources, for example, add new protocols or
g ) p)

support new headers

The Resources List

Each browser provides access to its resources list through browser.resources.

The resources list is an array of all resouces requested by the browser. You can iterate and
manipulate it just like any other JavaScript array.

Each resource provides four properties:

* request - The request object

e response - The resource object (if received)

* error - The error received instead of response

e target - The target element or document (when loading HTML page, script, etc)
The request object consists of:

* method - HTTP method, e.g. "GET"

e url -The requested URL

* headers - All request headers

* body - The request body can be Buffer or string; only applies to POST and PUT
methods

e multiparty - Used instead of a body to support file upload
e time - Timestamp when request was made
e timeout - Request timeout (0 for no timeout)

The response object consists of:

Page 10



* ur'l -The actual URL of the resource; different from request URL if there were any
redirects

* statusCode - HTTP status code, eg 200
* statusText - HTTP static code as text, eg "OK"
* headers - All response headers

* body - The response body, may be Buffer or string, depending on the content type
encoding

* redirects - Number of redirects followed (0 if no redirects)
e time - Timestamp when response was completed

Request for loading pages and scripts include the target DOM element or document. This
is used internally, and may also give you more insight as to why a request is being made.

Mocking, Failing and Delaying Responses

To help in testing, Zombie includes some convenience methods for mocking, failing and
delaying responses.

For example, to mock a response:

browser.resources.mock("http://3rd.party.api/vl/request", {
statusCode: 200,
headers: { "ContentType'": "application/json" },
body: JSON.stringify({ "count": 5 })

})

In the real world, servers and networks often fail. You can test to for these conditions by
asking Zombie to simulate a failure. For example:

browser.resource.fail("http://3rd.party.api/vl/request");

Another issue you'll encounter in real-life applications are network latencies. When running
tests, Zombie will request resources in the order in which they appear on the page, and
likely receive them from the local server in that same order.

Occassionally you'll need to force the server to return resources in a different order, for
example, to check what happens when script A loads after script B. You can introduce a
delay into any response as simple as:

browser.resources.delay("http://3d.party.api/vl/request", 50);

The Pipeline

Zombie uses a pipeline to operate on resources. You can extend that pipeline with your
own set of handlers, for example, to support additional protocols, content types, special
handlers, better resource mocking, etc.

Page 11



The pipeline consists of a set of handlers. There are two types of handlers:

Functions with two arguments deal with requests. They are called with the request object
and a callback, and must call that callback with one of:

¢ No arguments to pass control to the next handler
¢ An error to stop processing and return that error
* null and the response objec to return that response

Functions with three arguments deal with responses. They are called with the request
object, response object and a callback, and must call that callback with one of:

¢ No arguments to pass control to the next handler
¢ An error to stop processing and return that error

To add a new handle to the end of the pipeline:

browser.resources.addHandler (function(request, next) {
// Let's delay this request by 1/10th second
setTimeout (function() {
Resources.httpRequest(request, next);
}, Math.random() * 100);
3
If you need anything more complicated, you can access the pipeline directly via
browser.resources.pipeline
You can add handlers to all browsers via Browser .Resources.addHandler. These

handlers are automatically added to every new browser.resources instance.

Browser.Resources.addHandler (function(request, response, next) {
// Log the response body
console.log("Response body: " + response.body);
next();

1)
When handlers are executed, this is set to the browser instance.

Operating On Resources

If you need to retrieve of operate on resources directly, you can do that as well, using all
the same features available to Zombie, including mocks, cookies, authentication, etc.

resources.addHandler(handler)

Adds a handler to the pipeline of this browser instance. To add a handler to the pipeline
of every browser instance, use Browser .Resources.addHandler.

resources.delay (url, delay)

Retrieve the resource with the given URL, but only after a delay.

Page 12



resources.dump(output)

Dumps the resources list to the output stream (defaults to standard output stream).

resources.fail(url, error)

Do not attempt to retrieve the resource with the given URL, but act as if the request failed
with the given message.

This is used to simulate network failures (can't resolve hostname, can't make connection,
etc). To simulate server failures (status codes 5xx), use resources.mock.
resources.pipeline

Returns the current pipeline (array of handlers) for this browser instance.

resources.get(url, callback)
Retrieves a resource with the given URL and passes response to the callback.

For example:

browser.resources.get("http://some.service", function(error, respo
console.log(response.statusText) ;
console.log(response.body);

1)

resources.mock(url, response)

Do not attempt to retrieve the resource with the given URL, but return the response object
instead.

resources.post(url, options, callback)

Posts a document to the resource with the given URL and passes the response to the
callback.

Supported options are:
* body- Request document body
* headers - Headers to include in the request
* params - Parameters to pass in the document body
* timeout - Request timeout in milliseconds (0 or null for no timeout)

For example:

Page 13



var params = { '"count'": 5 };
browser.resources.post("http://some.service", { params: params },

1);

var headers = { "Content-Type'": "application/x-www-form-urlencoded
browser.resources.post("http://some.service", { headers: headers, |

});.

resources.request(method, url, options, callback)
Makes an HTTP request to the resource and passes the response to the callback.
Supported options are:

* body- Request document body

* headers - Headers to include in the request

* params - Parameters to pass in the query string (GET, DELETE) or document body
(POST, PUT)

e timeout - Request timeout in milliseconds (0 or null for no timeout)

For example:

browser.resources.request("DELETE", "http://some.service", functiol

1) ;

resources.restore(url)

Reset any special resource handling from a previous call to delay, fail or mock.

Page 14



	Zombie.js
	Browser
	browser.assert
	browser.console
	browser.referer
	browser.resources
	browser.tabs
	browser.eventLoop
	browser.errors
	Extending The Browser

	Tabs
	browser.close(window)
	browser.close()
	browser.tabs
	browser.tabs[number]
	browser.tabs[string]
	browser.tabs.find(string)
	browser.tabs.closeAll()
	browser.tabs.current
	browser.tabs.dump(output)
	browser.tabs.index
	browser.tabs.length
	browser.open(url: "http://example.com")
	browser.window

	Assertions
	Available Assertions
	assert.attribute(selection, name, expected, message)
	assert.className(selection, className, message)
	assert.cookie(name, expected, message)
	assert.element(selection, message)
	assert.elements(selection, count, message)
	assert.evaluate(expression, expected, message)
	assert.global(name, expected, message)
	assert.hasClass(selection, className, message)
	assert.hasFocus(selection, message)
	assert.input(selection, expected, message)
	assert.hasNoClass(selection, className, message)
	assert.prompted(messageShown, message)
	assert.redirected(message)
	assert.success(message)
	assert.status(code, message)
	assert.style(selection, style, expected, message)
	assert.text(selection, expected, message)
	assert.url(url, message)

	Roll Your Own Assertions

	Events
	console (level, messsage)
	active (window)
	closed (window)
	done ()
	evaluated (code, result, filename)
	event (event, target)
	focus (element)
	inactive (window)
	interval (function, interval)
	link (url, target)
	loaded (document)
	loading (document)
	opened (window)
	redirect (request, response)
	request (request)
	response (request, response)
	submit (url, target)
	timeout (function, delay)

	Resources
	The Resources List
	Mocking, Failing and Delaying Responses
	The Pipeline
	Operating On Resources
	resources.addHandler(handler)
	resources.delay(url, delay)
	resources.dump(output)
	resources.fail(url, error)
	resources.pipeline
	resources.get(url, callback)
	resources.mock(url, response)
	resources.post(url, options, callback)
	resources.request(method, url, options, callback)
	resources.restore(url)




